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Agenda 
● Microservices Architecture

○ Motivations: Monolithic vs 
Microservice

○ Patterns for microservices
■ Data management
■ Transactional messaging
■ Inter-service communications 
■ Service discovery
■ Security
■ Observability
■ Deployment 
■ Etc.

○ Case studies : Netflix, Devoxx

● Practices with JHipster
○ Monolith generation
○ Code génération with OpenAPI 

(swagger).
○ Monolith deployment with Docker
○ Micro-services refactoring and 

generation
○ Micro-services deployment with 

Docker
○ Micro-services deployment with 

Kubernetes on GCP
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IT Architecture Trends

App “Desagregation” Evolution

FastIT
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App “Desagregation” Evolution

Monolith to Serverless (function as a service)

Source : Dr. Paul Fremantle, CTO WSO2
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App “Desagregation” Evolution

More and more endpoints to integrate 

Source : Dr. Paul Fremantle, CTO WSO2
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FastIT: a motivation for Microservices
● Enterprise IT organization model for bringing the agility and the innovation 

required to produce (new) digital services

● Goals :
− accelerate all phases prior to placing on the market
− simplify the operational phase
− opposes long-cycle projects and ITIL-type processes

● Medium: Reorganizing the methods around the product to be delivered
− Design: lean startup, A/B testing, design thinking, user centric, hackathon, 

…
− Development: mockup/prototype, code generation, agility, devops, …
− Production: on-demand cloud architectures, cloud native applications, 

Open API, microservices, ...
● Expectations

− Minimum Viable Product (MVP)
● Answering to the functional and qualitative expectations of end-users
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https://en.wikipedia.org/wiki/ITIL
https://en.wikipedia.org/wiki/Lean_startup
https://en.wikipedia.org/wiki/A/B_testing
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Exercice: The cost of the software

Use http://softwarecost.org/tools/COCOMO/ for estimating Effort, Price and Schedule
of the development of

● (nominal) software of 20000 loc “from scratch”
● (nominal) software of 20000 loc for a generated boiler plate (1000 reused, 2000 

added)
● reliable software such as Linux Kernel, Apache HTTPD, MySQL, Wordpress, 

Mattermost, Faveo Helpdesk  …

Cost per Person-Month (Dollars): France (Paris, Grenoble), UK, Swizterland, India, Morroco, 
Hong Kong, Shenzen, Madagascar …
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http://softwarecost.org/tools/COCOMO/
https://en.wikipedia.org/wiki/Boilerplate_code
https://openhub.net/p/linux/estimated_cost
https://openhub.net/p/apache/estimated_cost
https://openhub.net/p/mysql/estimated_cost
https://openhub.net/p/wordpress
https://openhub.net/p/Mattermost/estimated_cost
https://openhub.net/p/faveo-helpdesk/estimated_cost
https://survey.stackoverflow.co/2024/work#salary-comp-total


The software lifecycle of an artifact/API

Versioning schema (increment policy)
<major>.<mini>[.<micro>][-<qualifier>[-<buildnumber>]]
Major : major changes (except 0 to 1) : no retro-compatibility guarantee
Mini (or Micro): ajouts fonctionnels. retro-compatibility garantie
Micro (or Nano or Patch) : corrective maintenance (bug fix, perf fix)

Qualifiers
alpha1 : alpha version (very unstable and no completed) for dev team
beta1, b1, b2 : beta version (unstable). can be ea
rc1, rc2 : release candidate
m1, m2 : milestone
ea : early access (restricted to a set of volunteers/guinea pigs …)
rtm : release to marketing
lts : long term support (3 – 5 - 10 years)
ga : general availability or general acceptance
sp : service pack
SNAPSHOT (Maven) : under construction (before rc1, rc 2 …)
RELEASE : frozen final

See http://en.wikipedia.org/wiki/Software_release_life_cycle  et https://semver.org/ 
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https://en.wikipedia.org/wiki/Long-term_support
http://en.wikipedia.org/wiki/Software_release_life_cycle
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The software lifecycle of an artifact/API

Google Gmail

April 1, 2004 (limited beta release). exited the beta status on July 7, 2009.

Windows 10

July 29, 2015 (GA) - October 15, 2025 (official end)

Microsoft Popfly

May 18, 2007 (Beta) - July 16, 2009 (announced) - August 24, 2009 (discontinued)

Google PowerMeter

October 5, 2009 (Beta) - June 2011 (announced) - September 16, 2011 (discontinued)
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https://en.wikipedia.org/wiki/Gmail
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What are microservices?

● An architectural style that structures an application as a collection of 
loosely coupled services, which implement business capabilities. 

● The microservice architecture enables
○ the continuous delivery/deployment of large, complex applications.
○ an organization to evolve its technology stack
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What are microservices?

The microservice architecture:

● Simplifies testing and 
enables components to be 
deployed independently

● Structures the engineering 
organization as a collection 
of small (6-10 members*), 
autonomous teams, each 
of which is responsible for 
one or more services

16aka Two-pizza team



Monolithic vs Microservice Architecture

● Example of a server-side enterprise application:
○ Handles requests (HTTP requests and messages) by executing business 

logic; 
○ Accesses a database; 
○ Exchanges messages with other systems; 
○ Returns a HTML/JSON/XML/Protobuf/FlatBuffers response

● The application:
○ Must support a variety of different clients including desktop browsers, 

mobile browsers and native mobile applications.
○ Might expose an API for 3rd parties to consume.
○ Might also integrate with other applications (internal or 3rd parties) via either 

web services or a message broker. 17



Monolithic vs Microservice Architecture - 
Requirements

○ New team members must quickly become productive
○ The application must be easy to understand and modify
○ Practice continuous deployment of the application
○ Run multiple copies of the application on multiple machines in order to 

satisfy scalability and availability requirements
○ Take advantage of emerging technologies (frameworks, programming 

languages, etc)
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Monolithic architecture

● Examples of monolithic architectures:
○ a single Java WAR file
○ a single directory hierarchy of Rails xor 

NodeJS code
○ +
○ a relational database (Postgres, MySQL)

xor
a NoSQL database (MongoDB)
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Monolithic architecture - Drawbacks

● Large monolithic code base
● Continuous deployment is difficult 
● Scaling the application can be difficult 
● Slow web container startup
● Obstacle to scaling development
● Requires a long-term commitment to a technology stack
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Microservice architecture

● The application is structured as a set of loosely 
coupled, collaborating services

● Each service implements a set of narrowly, 
related functions

● Services communicate using either: 
○ synchronous protocols such as 

HTTP/REST 
○ or asynchronous protocols such as 

AMQP. 
● Services can be developed and deployed 

independently of one another
● Each service has its own database in order to 

be decoupled from other services
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The Scale Cube

Three dimension scalability model 

22



Microservice architecture: benefits

● Enables the continuous delivery and deployment of large, complex 
applications

○ Better testability
○ Better deployability 
○ Autonomous teams

● Each microservice is (relatively) small
○ Easier to understand
○ The application starts faster
○ Improved fault isolation.

● Eliminates any long-term commitment to a technology stack
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Microservice architecture: drawbacks

● Additional complexity of creating a distributed system.

○ Testing 

○ Inter-service communication mechanism

○ Distributed transactions

○ Data redundancy 

● Deployment complexity

● Increased memory consumption
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When to use the microservice architecture?

Depends on

● application scope
● team size
● team skill
● time to market
● infrastructure manpower
● user base
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Choosing a monolithic architecture

● application scope : small and well-defined and remains simple
● team size : small (up to 8 peoples)
● team skill : novice and intermediate
● time to market : critical
● infrastructure manpower : do not want to spend time
● user base : small or specific set of users in the enterprise app
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Choosing a microservice architecture

● application scope : large and well defined
● team size : large
● team skill : good and confident in advanced MS patterns
● time to market : not critical, long-term vision
● infrastructure manpower : spend time on infra and in 

monitoring 
● user base : huge or growing
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Microservice architecture - 101 patterns
https://microservices.io/patterns
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Microservice architecture - 101 patterns
https://microservices.io/patterns
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Microservices Patterns
Application Patterns
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Microservices Patterns
Application Infrastructure Patterns

Communication patterns

31



Microservices Patterns
Infrastructure Patterns
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Microservices Patterns
Decomposition
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How to decompose the application into services?

● Requirements: 
○ The architecture must be stable
○ Services must be cohesive
○ Services must conform to the Common Closure Principle 
○ Services must be loosely coupled 
○ Services should be testable
○ Services should be small 
○ Development teams should be autonomous
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https://en.wikipedia.org/wiki/Cohesion_(computer_science)
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How to decompose the application into services?

Two strategies exist:

● Decompose by business capability 

● Decompose by domain-driven design subdomain

Enforce the SRP (Single Responsibility Principle) pattern
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Microservices Patterns
Decomposition
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Decompose by business capability

Definition: A business capability is a concept from business architecture modeling. It is 
something that a business does in order to generate value.

Example:

●Order Management is responsible for orders
●Customer Management is responsible for customers
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Decompose by business capability
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Decompose by business capability

● Products management
● Cart management
● Shipping Management
● Order Management
● Payment management
● Shipping Management
● Marketing Content Management
● Notifications (Email/SMS) Management
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Decompose by business capability

Subcapabilities

Order management

● Order processing
● Invoice Management

Shipping Management

● Order Tracking
● Fulfillment

Marketing Content Management

● Content Management
● Campaign Management
● Discount Coupons Management
● Email/SMS Management

40



Decompose by business capability

● Result in
○ Products Service
○ Inventory Service
○ Shopping Cart Service
○ Ordering Service
○ Shipping Service
○ Payment Service
○ Invoice Service
○ Communication Service
○ Shipment Tracking & fulfillment Service
○ Content Service
○ Coupon Management Service

41



Decompose by business capability

Advantages:

● Stable architecture since the business capabilities are relatively stable

● Development teams are organized around delivering business value rather 

than technical features

● Services are cohesive and loosely coupled

Issues:

● Identifying business capabilities is sometimes difficult

42



Microservices Patterns
Decomposition
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Decompose by subdomain

Define services corresponding to Domain-Driven Design (DDD) subdomains. 
Subdomains can be classified as follows:

● Core - key differentiator for the business and the most valuable part of the 
application

● Supporting - related to what the business does but not a differentiator.

● Generic - not specific to the business 

44



Decompose by subdomain

Advantages:

● Stable architecture since the subdomains are relatively stable

● Development teams are cross-functional, autonomous, and organized around 
delivering business value rather than technical features

● Services are cohesive and loosely coupled

Issues

● Identifying subdomains can be difficult
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Single responsibility pattern

Defined in 2006 by Robert C. Marting, a.k.a. Uncle Bob, in the book 
Agile Principles, Patterns, And Practices in C# 
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Single responsibility pattern

Every module or class should have 
responsibility over a single part of 
the functionality provided by the 
software, and that responsibility 
should be entirely encapsulated by 
the class.
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Single responsibility pattern

at least two responsibilities:
1) drawing a rectangle on a GUI
2) calculating the area of that rectangle.
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Single responsibility pattern
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Microservices Patterns
Data patterns
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How to maintain data consistency?

● Database per Service pattern
● Shared Database (anti) pattern 

Several patterns exist to maintain data consistency and perform queries
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Microservices Patterns
Database architecture
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Database architecture

Remark: CUSTOMER_ID is a foreign key referencing CUSTOMER
54



Database architecture

Requirements:

● Services must be loosely coupled 
● Transactions must enforce invariants that span multiple services
● Transactions need to query data that is owned by multiple services
● Transactions may be long-running
● Some queries must join data that is owned by multiple services
● Different services have different data storage requirements
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Reminder: Transaction processing

Short-running : several milliseconds to several minutes

OLTP systems

Debit-Credit (TPC-A), Order (TPC-C) … 

Standards (Xopen DTP, OSI/TP…) for Two Phase Commit protocol

Robust and scalable Transaction Monitors (Sabre, …)

Long-running : several hours to several days

B2B usecases (next slides)

No standard, several research works (Sagas, Contract, Flex, ACTA, …)

http://www.tpc.org/
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Reminder: Transaction processing
The X/Open DTP Model

AP (Application Program)

AP with STDL / AP with other prog. lang.

OSI TP
To other TP domains

TM
(Transaction Mnger)

TXSQL, ISAM
...

XA XA+

TxRPC, XATMI
CPI-C

RM
(Ressource Mnger)

CRM
(Comm. Rsrc.  Mnger)

XAP-TP

From  Bernstein et Newcomer 
1997 57



Long-running transactions

Several standards use compensation transactions : BTP, BWTP, XTML, ...
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Travel
Coordina

tor

Flight

Hotel

Long-running transactions : The travel agency

LTM

Hotel
Service

GTM
Travel

Service

LTM

Flight
Service

SO
AP

R
EST

Business

TP
TP

TP

TP
TP

TP

TP API

API

book(Georges V)

book(AF)
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Microservice Patterns
Database architecture
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Shared Database
Use a (single) database that is shared by multiple services 

Each service freely accesses data owned by other services using 
local ACID transactions

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION
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Shared Databases

Advantages:

● Familiar and straightforward ACID transactions to enforce data consistency

● A single database is simpler to operate

Drawbacks:

● Development time coupling 

● Runtime coupling 

● Inadequate for long-running or long-lived transactions

● One single database might not fit all requirements
62
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Decomposition Patterns
Database architecture
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Database per Service 

64



Database per Service 

The service’s database is effectively part of the implementation of that service.

Different possibilities:

● Private-tables-per-service (same DBMS for all μS)

● Schema-per-service (same DBMS for all μS)

● Database-server-per-service
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Database per Service
Advantages:
● Services are loosely coupled
● Different databases can be used (e.g. key-value store, document database, 

time series database, graph database)
Drawbacks:
● Difficult to implement transactions that span multiple services 
● Difficult to implement queries that join data in multiple databases 
● Complexity of managing multiple SQL and NoSQL databases
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Database per Service

Some patterns provide solutions to the previously mentioned drawbacks

● API Composition - the application performs the join rather than the database
● Command Query Responsibility Segregation (CQRS) - maintain one or more 

materialized views that contain data from multiple services
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Microservices Patterns
Data consistency
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Maintaining consistency

● What is consistency ?

○ Paolo Viotti, Marko Vukolic: Consistency in Non-Transactional Distributed Storage Systems.
 ACM Comput. Surv. 49(1): 19:1-19:34 (2016)

● The “old way”: 2 phase commit

● The microservice way: transactions Saga
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The Two-Phase Commit Protocol

Achieve ACID properties over distributed X/Open ressources (MOM, RDBMS)

ACID for Atomicity, Consistency, Isolation, Durability

● 2PC Actors
○ Initiator (the application)
○ Coordinator (ie transaction monitor)
○ Ressources (aka participants, slaves)
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The Two-Phase Commit Protocol : without failure

begintrans

begintrans

Init+CoordDBMS1 DBMS2

reqSQL
result

reqSQL
result

reqSQL
result

prepare prepare
votecommit

votecommit

Gcommit Gcommit

prepare prepare
votecommit

voteabort

Gabort Gabort

Init+CoordDBMS1 DBMS2
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The Two-Phase Commit Protocol : with failure

prepare prepare
votecommit

votecommit

Gcommit Gcommit

prepare prepare
votecommit

votecommit

GCommit Gcommit

resume resume
votecommitvotecommit

Init+CoordDBMS1 DBMS2 Init+CoordDBMS1 DBMS2
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The Two-Phase Commit Protocol : with failure

prepare prepare
votecommit

Gabort Gabort

prepare prepare
votecommit

votecommit

GCommit Gcommit

resume
Gabort

resume
Gcommit

timeout

Init+CoordDBMS1 DBMS2 Init+CoordDBMS1 DBMS2
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Microservices Patterns
Data consistency
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Saga Transactions

● Business transaction that spans multiple services are 
implemented as a saga

● A saga is a sequence of local transactions
● Each local transaction updates the database and publishes a 

message or event to trigger the next local transaction in the 
saga

● If a local transaction fails because it violates a business rule 
then the saga executes a series of compensating transactions 
that undo the changes that were made by the preceding local 
transactions 75



Saga Transactions
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Saga Transactions : without failure

1) Compensate 
Customer

2) Compensate
Order 1
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Saga Transactions Coordination

Two ways for coordinating sagas:

● Choreography

● Orchestration
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Choregraphy-based Saga
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Orchestration-based Saga
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Example : Choregraphy-based Saga @ Zenaton

https://gillesbarbier.medium.com/building-an-event-driven-orchestration-engine-bf62d45aef5d 

Event broker: 
RabbitMQ then 
Apache Pulsar

81
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Saga Transactions

Advantages:
● Allows maintaining data consistency across multiple services without using 

distributed transactions
Drawbacks
● Complex programming model (workflow oriented)
● Complex design of compensating transactions that explicitly undo 

changes made earlier in a saga
● Compensation is not always possible
● Compensation can fail

Issues : event/message broking
● A service must be able to atomically update its database

and publish a message/event 82



Saga vs BWTP
BWTP transaction completion

Calling Syst.One.com Two.com

activity

status=OK
commit commit

status=KO 

status=OK

cancel compen
sate

status=OK

status=OK

Calling Syst.One.com Two.com

activity

status=OK

retry
status=OK

status=KO
status=OK

Calling Syst.One.com Two.com

activity activity activity activity
status=OK

compen
satestatus=KO

timeout

compen
satestatus=OK
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Saga vs BWTP
BWTP compensation cascade

Calling Syst.One.com Two.com

status=OK

cancel

status=OK

Three.com

activity
status=OK

compen
satestatus=OK

status=KO

activity activity

cancel

status=OK
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Microservices Patterns
Data consistency
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Aggregate

An aggregate is a graph of objects that can be treated as a unit

Example: “When you drive a car, you do not have to worry about moving the wheels forward, making the engine combust with 
spark and fuel, etc.; you are simply driving the car. In this context, the car is an aggregate of several other objects and serves 
as the aggregate root to all of the other systems.” (Wikipedia)

A concept from DDD (Domain-Driven Design)

Aggregates produce Domain events.
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Microservices Patterns
Data consistency
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Domain event

A service often needs to publish events when it updates its data.

Used by transaction Saga and CQRS.

A concept from DDD (Domain-Driven Design)

Domain events are emitted by Aggregates

ie OrderCreated, CreditReserved, CreditLimitExceeded ...

https://paucls.wordpress.com/2018/05/31/ddd-aggregate-roots-and-domain-events-publication/

https://en.wikipedia.org/wiki/Domain-driven_design 89
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https://en.wikipedia.org/wiki/Domain-driven_design


Microservices Patterns
Data consistency
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Event sourcing

How to reliably/atomically update the database and publish messages/events?

2PC is not an option!

A concept from DDD (Domain-Driven Design)
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Event sourcing

Event sourcing persists the state of a business entity as a sequence of state-
changing events 

Whenever the state of a business entity changes, a new event is appended to the 
list of events 

Applications persist events in an event store, which is a database of events 

The event store behaves like a message broker 

92



Event sourcing - Example
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Event sourcing

Benefits
● Solves one of the key problems in implementing an event-driven architecture 

and makes it possible to reliably publish events whenever state changes.
● Provides a reliable audit log of the changes made to a business entity
● Makes it possible to implement temporal queries that determine the state of 

an entity at any point in time.
Drawbacks
● Different and unfamiliar style of programming.
● The event store is difficult to query since it requires typical queries to 

reconstruct the state of the business entities.
Related

● Event sourcing implements the Audit logging pattern. 94
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Microservices Patterns
Querying
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Querying patterns

How to implement a query that retrieves data from multiple services in a 
microservice architecture?

Remark: In shared database, JOIN requests between several tables
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Microservices Patterns
Querying
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API Composition
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API Composition

Advantages

● A simple way to query data in a microservice architecture

Drawbacks

● Some queries would result in inefficient, in-memory joins of large datasets.

Remark:  Research works on Distributed Database Systems : Semi-Joins …

@see ACM SIGMOD, VLDB conf proceeding
100



API Composition : Example

From https://ajay-yadav109458.medium.com/queries-in-microservice-79a657a928af 
101
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Microservices Patterns
Querying
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Command Query Responsibility Segregation 
(CQRS)

Isolate read (query) and write (command) into services

Create a (read-only) view database that replicates the data
The database is populated by subscribing to Domain 
events published by services
This patterns allows separating command and query 
components

Remark: Functional and non-functional requirements are 
different for read and write

● Write : transactional (consistency, isolation, ...), 
Schema Normalization

● Read : Schema Denormalization for perf, scalability
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Non-CQRS versus CQRS

https://ajay-yadav109458.medium.com/queries-in-microservice-79a657a928af
104



Command Query Responsibility Segregation 
(CQRS)

Advantages:
● Supports multiple denormalized views that are scalable and performant
● Improved separation of concerns = simpler command and query models
● Necessary in an event sourced architecture

Drawbacks:
● Increased complexity
● Potential code duplication
● Replication lag/eventually consistent views

105



Microservices Patterns
Testing
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Service Component Test

● How to easily test a service?

○ End to end testing (i.e. tests that launch multiple services) is difficult, slow, and expensive.

● Need to design a test suite that tests a service in isolation using test doubles 
for any services that it invokes.

● Example: Spring Cloud Contract

108



Service Component Test

Advantages:
● Testing a service in isolation is easier, faster, more reliable and cheap

Drawbacks:
● Tests might pass but the application will fail in production

Issues:
● How to ensure that the test doubles always correctly emulate the behavior of 

the invoked services?
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Microservices Patterns
Testing
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Consumer-side contract test

Test for verifying that the client of a service can communicate with the service

111



Microservices Patterns
Testing
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Consumer-driven contract test

How to easily test that a service provides an API that its clients expect?

Need for a test suite for a service that is written by the developers of another 
service that consumes it.

The test suite verifies that the service meets the consuming service’s 
expectations.

Example: Spring Cloud Contract.

113



Consumer-driven contract test

Advantages

● Testing a service in isolation is easier, faster, more reliable and cheap

Drawbacks

● Tests might pass but the application will fail in production

Issues

● How to ensure that the consumer provided tests match what the consumer 
actually requires?
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Microservices Patterns
UI (User Interface)
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UI patterns

Services are developed by business capability/subdomain-oriented teams that are also responsible for the user experience

Some UI screens/pages display data from multiple service

For instance, an e-commerce product detail page can display: 

●Basic information about the book such as title, author, price, etc.
●Your purchase history for the book
●Availability
●Buying options
●Other items that are frequently bought with this book
●Other items bought by customers who bought this book
●Customer reviews
●Sellers ranking
●…

Each data item corresponds to a separate service → how it is displayed is the responsibility of a different team

How to implement a UI screen or page that displays data from multiple services?
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Microservices Patterns
UI (User Interface)
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Server-side page fragment composition

Each team develops a web application that generates an HTML fragment 

The UI team develops the page templates that build pages by performing server-
side aggregation of the service-specific HTML fragments.

118



Microservices Patterns
UI (User Interface)
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Client-side UI composition

Each team develops a client-side UI component that implements the region of the 
page/screen for their service.

The UI team implements the page skeletons that build pages/screens by 
composing multiple, service-specific UI components.

Remark: SPA frameworks are component-based and can load dynamically modules 
(ie NGx). Each service team provide a set of UI components.
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Microservices Patterns
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Microservices Patterns
Communication patterns

Communication patterns
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Microservices Patterns
Communication style

Communication patterns
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Inter-service communications patterns

There exist various inter-service communication protocols

● Remote Procedure Invocation

● Messaging

● Domain-specific protocol(s)
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Microservices Patterns
Communication style

Communication patterns
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Remote Procedure Invocation (RPI)

A client uses a request/reply-based protocol to make requests to a service

There are numerous examples of RPI technologies

● REST

● gRPC (Protobuf), Thrift, Avro

● OMG CORBA 
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Remote Procedure Invocation (RPI)

Advantages
● Simple and familiar
● Simpler system since there is no intermediate broker

Drawbacks
● not other interaction patterns such as notifications, request/async response, 

publish/subscribe, publish/async response
● the service must be available for the duration of the interaction

Issues
● Client needs to discover locations of service instances
● API/schema versioning, untagged data and dynamic typing (Avro)
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Communication style

Communication patterns
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Messaging

Perform inter-service communication
by exchanging messages over messaging channels

Examples of messaging technologies

● AMQP (XA ressource)

● MQTT (Unreliable backhauls in IoT networks)

Examples of messaging technologies

● Apache Kafka (intra-datacenter)

● Apache Pulsar

● RabbitMQ
129



Messaging

Advantages:
● Loose coupling between clients and services
● Improved availability
● Supports a variety of communication patterns (request/reply, notifications, 

request/async response, publish/subscribe, publish/async response))
Drawbacks:
● Additional complexity of message broker
● Implementing request/reply-style communication is more complex

Issues:
● Client needs to discover location of message broker
● Message serialization :  Protobuf, Thrift, Avro ...
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Domain-specific protocols

Perform inter-service communication using domain-specific protocols
or with 3rd party legacy systems

Examples of domain-specific protocols:

● File transfer protocols: FTP, SFTP, SCP, Sharepoint ...

● Email protocols: SMTP, IMAP

● Media streaming protocols: RTMP, HLS, HDS

● Conferencing : SIP, WebRTC

● Realtime : OMG DDS & RTPS, DDS-XRCE

● Cluster (Sci) : MPI (Broadcast, Scatter)

● ...
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Transaction outbox pattern

A service typically need to atomically update the database and publish messages/events. 

2PC is not an option!
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Transactional Outbox Pattern
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Transaction outbox pattern

Advantages
● No 2PC

Drawbacks
● Potentially error prone since the developer might forget to publish the 

message/event after updating the database.

137



Microservices Patterns
Transactional Messaging

Communication patterns

138



Transaction log tailing
Problem: How to publish messages/events into the outbox in the database to 
the message broker?
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Transaction log tailing

Advantages

● No 2PC

● Guaranteed to be accurate

Drawbacks

● Relatively obscure (but becoming increasingly common)

● Requires database specific solutions

● Tricky to avoid duplicate publishing
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Polling publisher

Solution : Publish messages by polling the outbox in the database.

Advantages

● Works with any SQL database

Drawbacks

● Tricky to publish events in order

● Not all NoSQL databases support this pattern
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Circuit Breaker

Context

service is unavailable

service is exhibiting high latency

lead to resource exhaustion in the caller and failure cascades

Problem: How to prevent a network or service failure from cascading to other 
services?
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Circuit breaker

Client-side Proxy (RPI pattern) that functions in a similar fashion to an electrical 
circuit breaker.

● When the number of consecutive failures crosses a threshold, the circuit 
breaker trips 

● After the timeout expires the circuit breaker allows a limited number of test 
requests to pass through

● If those requests succeed the circuit breaker resumes normal operation

● Otherwise, if there is a failure the timeout period begins again
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Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
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Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
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Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
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Circuit Breaker

Advantages:

● Services handle the failure of the services that they invoke

Drawbacks:

● choose timeout values without creating false positives or introducing 
excessive latency.

Exemple : Netflix Hystrix

https://dzone.com/articles/circuit-breaker-design-pattern-using-netflix-hystr 
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Exception tracking

Errors sometimes occur when handling requests 

● When an error occurs, a service instance throws an exception

Problem: How to understand the behavior of an application and troubleshoot 
problems?

● Exceptions must be de-duplicated, recorded, investigated by developers and 
the underlying issue resolved

● Any solution should have minimal runtime overhead
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Exception tracking

Solution: Report all exceptions to a centralized exception tracking service that 
aggregates and tracks exceptions and notifies developers

Advantages

● Make it easy to view exceptions and track their resolution

Drawbacks

● The exception tracking service is additional infrastructure

152



Microservices Patterns
Observability

Communication patterns

153



Log aggregation

Service instances write information to a log files in a standardized format 

● The log file contains errors, warnings, information and debug messages

Problem: How to understand the behavior of an application and troubleshoot 
problems?

● Any solution should have minimal runtime overhead
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Log aggregation

Solution: 
● Use a centralized logging service that aggregates logs from each service 

instance
● Users can:

● search and analyze the logs
● configure alerts that are triggered when certain messages appear in the 

logs
Examples: AWS Cloud Watch
Issue: handling a large volume of logs requires substantial infrastructure
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Distributed tracing

Requests often span multiple services

To handle a request, a service often perform several operations: database queries, 
message publications, etc. 

Problem: How to understand the behavior of an application and troubleshoot 
problems?

● External monitoring only tells you the overall response time and number of 
invocations - no insight into the individual operations

● Any solution should have minimal runtime overhead

● Log entries for a request are scattered across numerous logs
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Distributed tracing

Solution: Instrument services to:
● Assign each external request a unique external request id
● Pass the external request id to all services that are involved in handling the 

request
● Include the external request id in all log messages
● Record information (e.g. start time, end time) about the requests and 

operations performed when handling an external request in a centralized 
service

Note: this instrumentation might done by a Microservice Chassis framework.
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Distributed tracing

Advantages:

● Useful insight into the behavior of the system including the sources of latency

● Enables developers to see how an individual request is handled by searching 
across aggregated logs for its external request id

Drawbacks:

● Aggregating and storing traces can require significant infrastructure

Examples

● Zipkin, Jaeger, Opentelemetry, Opentracing, Datadog ... 160



Getting Started With Observability for Distributed Systems
NICOLAS GIRON, SRE, KUMOMIND | HICHAM BOUISSOUMER, SRE, KUMOMIND
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Health Check API

A service instance can be incapable of handling requests yet still be running
● For example, it might have ran out of database connections

When this occurs:
● The monitoring system should generate a alert
● The load balancer or service registry should not route requests to the failed 

service instance

Problem: How to detect that a running service instance is unable to handle 
requests?
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Health Check API

Solution: 

● Implement, in each service, an health check API endpoint (e.g. HTTP /health) 
that returns the health of the service

● The health monitoring service (service registry or load balancer) periodically 
invokes the endpoint to check the health of the service instance
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Health Check API

Advantages

● Enables the health of a service instance to be periodically tested

Drawbacks

● The health check might not be sufficiently comprehensive and so requests 
might still be routed to a failed service instance
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Log deployments and changes

Problem: How to understand the behavior of an application and troubleshoot 
problems?

● Note that it useful to track when deployments and other changes occur since 
issues usually occur immediately after a change

Solution: Log every deployment and every change to the (production) environment
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Log deployments and changes

Examples: 

● A deployment tool can publish a pseudo-metric whenever it deploys a new 
version of a service

● This metric can then be displayed alongside other metrics enabling changes 
in application behavior to be correlated with deployments 

AWS Cloud Trail provides logs of AWS API calls
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Log deployments and changes

Advantages

● Faster resolution of problems: deployments and changes can easily be 
correlated with observed issues
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Audit Logging

Problem: How to understand the behavior of users and the application and 
troubleshoot problems?

● It is useful to know what actions a user has recently performed: customer 
support, compliance, security, etc.

Solution: Record user activity in a database.
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Audit Logging

Advantages

● Provides a record of user actions

Drawbacks

● The auditing code is intertwined with the business logic → complexifies the 
business logic
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Application Metrics

Problem: How to understand the behavior of an application and troubleshoot 
problems?
● The solution should have minimal runtime overhead

Solution:
● Instrument a service to gather statistics about individual operations
● Aggregate metrics in centralized metrics service 
● Provides reporting and alerting

Two models for gathering metrics: push, pull
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Application Metrics

Examples: 

● Instrumentation libraries

○ Coda Hale/Yammer Java Metrics Library

○ Prometheus

○ Telegraf

●  Metrics aggregation services

○ Prometheus

○ Kapacitor

○ AWS Cloud Watch
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Application metrics

Advantages:

● Provide deep insight into application behavior

Drawbacks:

● Metrics code is intertwined with business logic 

Issues:

● Aggregating metrics can require significant infrastructure
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Microservice Chassis

● Many cross-cutting concerns:
○ Externalized configuration
○ Logging 
○ Health checks 
○ Metrics 
○ Distributed tracing 

● Tens or hundreds of services 
○ Developers cannot afford to spend, for each service, a few days configuring 

the mechanisms to handle cross-cutting concerns 
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Microservice Chassis

Requirements: 
● Creating a new microservice should be fast and easy

Solution: Build your microservices using a microservice chassis framework, which 
handles cross-cutting concerns

Examples of microservice chassis frameworks
● Java

○ Spring Boot and Spring Cloud, Dropwizard

● Go
○ Gizmo, Micro, Go kit
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Microservice Chassis

Advantages

● Developers can quickly get started with developing a microservice

Drawbacks

● Obstacle to adopting a new programming language or framework
○ Requires a microservice chassis for each programming language/framework
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Externalized Configuration

An application typically uses one or more infrastructure and 3rd party services: 
● Infrastructure services: Service registry, Message broker, Database server
● 3rd party services: payment processing, bulk email and messaging, etc.

Problem: How to enable a service to run in multiple environments without 
modification?
● A service must be provided with configuration explaining how it connects to 

the external/3rd party services
● A service must run in multiple environments (dev, test, qa, staging, 

production) without modification and/or recompilation
● Different environments have different instances of the external/3rd party 

services:
○ QA database vs. production database
○ Test credit card processing account vs. production credit card processing account
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Externalized Configuration

Solution: 

● Externalize all application configuration including the database credentials and 
network location

● On startup, a service reads the configuration from an external source, e.g. OS 
environment variables, etc.
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Externalized Configuration

Example: 

@Component

class RegistrationServiceProxy @Autowired()(restTemplate: RestTemplate) extends RegistrationService {

  @Value("${USER_REGISTRATION_URL}")

  var userRegistrationUrl: String = _

web:

  image: sb_web

  ports:

    - "8080:8080"

  links:

    - eureka

  environment:

    USER_REGISTRATION_URL: http://REGISTRATION-SERVICE/user

Note: 
REGISTRATION-SERVICE 
is the logical name of the 
service. It is resolved 
using 
Client-side discovery.

conf. injected at startup

application-dev.yml

dev Profile
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Externalized Configuration

Advantages:

● The application runs in multiple environments without modification and/or 
recompilation

Issues:

● How to ensure that when an application is deployed the supplied configuration 
matches what is expected?
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Access Token

The API gateway authenticates requests, and forwards them to the services, 
which might in turn invoke other services.

Problem: How to communicate the identity of the requestor to the services that 
handle the request?

Solution:

● The API Gateway authenticates the request and passes an access token that 
securely identifies the requestor in each request to the services

● A service can include the access token in requests it makes to other services
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Access Token

Advantages

● The identity of the requestor is securely passed around the system

● Services can verify that the requestor is authorized (RBAC) to perform an 
operation

Examples

● JWT, OAuth2
● Identity managers: Keycloak, OpenAM, Okta (IMaaS) …

Exercice: have glance on JWT exchanged between JHipster generated frontend and 
backend and decode then with https://jwt.io/ 188
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Service Discovery

Services need to call one another

● Monolithic application: services invoke one 
another through language-level method or 
procedure calls

● Traditional distributed system: services run at 
fixed, well known locations (hosts and ports) 

● Microservice-based application: virtualized or 
containerized environments where the number 
of instances of a service and their locations 
changes dynamically
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Service Discovery

How does the client of a service (the API gateway or another service) discover the 
location of a service instance?

● Each instance of a service exposes a remote API
○ HTTP/REST, or Thrift etc. at a particular location (host and port)

● The number of services instances and their locations changes dynamically
● Virtual machines and containers are usually assigned dynamic IP addresses
● The number of services instances might vary dynamically (EC2 Autoscaling 

Group …)
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Client-side Service Discovery
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Client-side Service Discovery - Example

@Component

class RegistrationServiceProxy @Autowired()(restTemplate: RestTemplate) extends RegistrationService {

  @Value("${user_registration_url}")

  var userRegistrationUrl: String = _

  override def registerUser(emailAddress: String, password: String): Either[RegistrationError, String] = {

      val response = restTemplate.postForEntity(userRegistrationUrl,

        RegistrationBackendRequest(emailAddress, password),

        classOf[RegistrationBackendResponse])

       ...

}
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Client-side Service Discovery - Example

@Configuration

@EnableEurekaClient

@Profile(Array("enableEureka"))

class EurekaClientConfiguration {

  @Bean

  @LoadBalanced // Ribbon

  def restTemplate(scalaObjectMapper : ScalaObjectMapper) : RestTemplate = {

    val restTemplate = new RestTemplate()

    restTemplate.getMessageConverters foreach {

      case mc: MappingJackson2HttpMessageConverter =>

        mc.setObjectMapper(scalaObjectMapper)

      case _ =>

    }

    restTemplate

  }
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Client-side Service Discovery - Example

Advantages:

● Fewer moving parts and network hops compared to Server-side Discovery

Drawbacks:

● This pattern couples the client to the Service Registry

● Developers need to implement client-side service discovery logic for each 
programming language/framework used by the application, e.g Java/Scala, 
JavaScript/NodeJS. 

○ Netflix Prana provides an HTTP proxy-based approach to service discovery for non-JVM 
clients. 197
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Server-side Service Discovery - Examples

AWS Elastic Load Balancer (ELB)

Clustering solutions such as Kubernetes and Marathon 
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Server-side Service Discovery 

Advantages:
● Client code simpler than with client-side discovery
● Some cloud environments provide this functionality, e.g. AWS Elastic Load 

Balancer
Drawbacks:
● Unless it’s part of the cloud environment, the router is another system 

component that must be installed and configured (and replicated for 
availability and capacity)

● The router must support the necessary communication protocols (e.g HTTP, 
gRPC, Thrift, etc) 

● More network hops are required than when using Client Side Discovery
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Service registry

Problem: How do clients of a service (Client-side discovery) and/or routers 
(Server-side discovery) know about the available instances of a service?

● Exposes a remote API (HTTP/REST, Thrift ...) at a particular location (host 
and port)

● Dynamic changes of number of services instances and their locations
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Service registry

Solution:

A database of services instances, their instances and their locations

● register on startup
● deregistered on shutdown
● invoke a service instance’s health check API 
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Service registry - Examples

Examples

● Netflix Eureka, JHipster Registry
○ commonly used services: Apache Zookeeper, Consul, Etcd

● Implicit service registry
○ Kubernetes, Marathon, AWS ELB ...
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Service registry

Advantages

● Client of the service and/or routers can discover the location of service 
instances

Drawbacks

● Yet another infrastructure component that must be setup, configured and 
managed. 

○ The service registry is a critical system component!
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Service registry

Two options to register service instances:

● Self registration pattern 

● 3rd party registration pattern 

Additional remarks: 

● Service registry instances must be deployed on fixed and well known IP 
addresses. 

● Clients are configured with those IP addresses.
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Self-Registration pattern

Problem: How are service instances registered with and unregistered from the 
service registry?

● Service instances must be registered with the service registry on startup and 
unregistered on shutdown

● Service instances that crash must be unregistered from the service registry

● Service instances that are running but incapable of handling requests must be 
unregistered from the service registry
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Self-Registration pattern

Solution: 

● A service instance is responsible for registering itself with the service registry 
○ On startup the service instance registers itself (host and IP address) with the service registry 
○ The client must periodically renew its registration so that the registry knows it is still alive 
○ On shutdown, the service instance unregisters itself from the service registry
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Self-Registration pattern

Advantages

● A service instance knows its own state and can refined state model: 
“STARTING, AVAILABLE, …” rather than “UP/DOWN”

Drawbacks

● Couples the service to the Service Registry
○ Developers must implement service registration logic in each programming 

language/framework that they use to write your services, e.g. NodeJS/JavaScript, Java/Scala, 
etc.

○ A service instance that is running yet unable to handle requests will often lack the self-
awareness to unregister itself from the service registry
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3rd Party Registration pattern

Solution: 
● A 3rd party registrar is responsible for registering and unregistering a service 

instance with the service registry
● When the service instance starts up, the registrar registers the service 

instance with the service registry
● When the service instance shuts downs, the registrar unregisters the service 

instance from the service registry

Examples: 
● Netflix Prana, AWS Autoscaling Groups, Joyent’s Container buddy, 

Registrator, Clustering frameworks such as Kubernetes and Marathon
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3rd Party Registration pattern

Advantages

● The service code is less complex than when using the Self Registration 
pattern since its not responsible for registering itself

● The registrar can perform health checks on a service instance and 
register/unregister the instance based the health check

Drawbacks

● Superficial knowledge of the state of the service instance e.g. RUNNING or 
NOT RUNNING

● Another critical component that must be installed, configured and maintained
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External API

Example of an online store selling books:
● Need to develop multiple versions of the product details user interface:

○ HTML5/JavaScript-based UI for desktop and mobile browsers
○ Native Android and iPhone clients
○ Expose product details via a REST API for use by 3rd party applications

● A product details UI can display a lot of information about a product. 
● Basic information about the book such as title, author, price, etc.
● Your purchase history for the book
● Availability
● Buying options
● Customer reviews
● …
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External API

The online store uses the Microservice architecture pattern → the product details 
data is spread over multiple services:
● Product Info Service 
● Pricing Service 
● Order service 
● Inventory service 
● Review service 

Consequently, the code that displays the product details needs to fetch information 
from all of these services.

217



External API

Problem: How do the clients of a Microservices-based application access the 
individual services?
● The granularity of APIs provided by microservices is often different than what 

a client needs
● Different clients need different data
● Network performance is different for different types of clients
● The number of service instances and their locations (host+port) changes 

dynamically
● Partitioning into services can change over time and should be hidden from 

clients
● Services might use a diverse set of protocols, some of which might not be 

web friendly 218
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API Gateway
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API Gateway

Advantages:
● Insulates the clients:

○ from how the application is partitioned into microservices
○ from the problem of determining the locations of service instances

● Provides the optimal API for each client
● Reduces the number of requests/roundtrips
● Simplifies the client by moving logic for calling multiple services from the client 

to API gateway
● Translates from a “standard” public web-friendly API protocol to whatever 

protocols are used internally
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API Gateway

Drawbacks:
● Increased complexity
● Increased response time

Issues:
● How implement the API gateway?

○ An event-driven/reactive approach
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Backend for front-end
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Backend for front-end

Fig from https://blog.bitsrc.io/bff-pattern-backend-for-frontend-an-introduction-e4fa965128bf 
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Backend for front-end

Advantages

Separation of concerns — Frontend requirements will be separated from the backend concerns. This is easier for maintenance.

● Easier to maintain and modify APIs — The client application will know less about your APIs’ structure, which will make it 
more resilient to changes in those APIs.

● Better error handling in the frontend — Server errors are meaningless to the frontend user most of the time. Instead of 
directly returning the error server sends, the BFF can map out errors that need to be shown to the user. This will improve the 
user experience.

● Multiple device types can call the backend in parallel — While the browser is making a request to the browser BFF, the 
mobile devices can do the same. It will help obtain responses from the services faster.

● Better security — Certain sensitive information can be hidden, and unnecessary data to the frontend can be omitted when 
sending back a response to the frontend. The abstraction will make it harder for attackers to target the application.

● Shared team ownership of components — Different parts of the application can be handled by different teams very easily. 
Frontend teams get to enjoy ownership of both their client application and its underlying resource consumption layer; leading to 
high development velocities. The below diagram shows an example of such a team separation along with BFFs.

Pitfalls

. In order to avoid these, we have to follow some best practices. Some best practices to follow are stated below.

● Avoid implementing a BFF with self-contained all-inclusive APIs — Your self-contained APIs should be in the 
microservices layer. Most developers forget this and start implementing service-level APIs in the BFF as well. You should keep 
in mind that the BFF is a translation later between the client and the services. When data is returned from a service API, the 
purpose of it is to transform it into the data type specified by the client application.

● Avoid BFF logic duplication —A vital point to note is that a single BFF should cater to a specific user experience, not a 
device type. For example, most of the time, all mobile devices (iOS, Android, etc.) share the same user experience. In that 
case, one BFF for all these operating systems is sufficient. There is no need to have a separate BFF for iOS and another for 
Android.

● Avoid over-relying on BFFs — A BFF is merely a translation layer. Yes, it provides a certain level of security to the application 
too. But, you should not rely on it more than you should. Your API layer and frontend layer should take care of all the 
functionality and security aspects regardless of the presence of a BFF or not. Because the BFF is supposed to fill a gap, not 
add any functionality or service to the application.
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Service deployment

Problem: How are services packaged and deployed?
● Variety of languages, frameworks, and framework versions
● Multiple service instances for throughput and availability
● Services must be independently deployable and scalable
● Service instances need to be isolated from one another
● Building and deploying a service should be fast
● Developers should be able to constrain the resources (CPU and memory) consumed by 

a service
● Developers need to monitor the behavior of each service instance
● Deployment needs to be reliable and efficient
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Service deployment platform

Solution: Use a deployment platform
● Automated infrastructure for application deployment.
● Provides a service abstraction (set of highly available (e.g. load balanced) 

service instances)
Examples: 
● IaaS (Amazon EC2, Google Cloud, Azure, Digital Ocean, private Openstack IaaS …)
● Container orchestrators (Kubernetes, KIND, Docker swarm, Rancher …)
● Serverless platforms (AWS Lambda, Azure Functions, Google Cloud Functions, OpenWhisk …)
● PaaS (Heroku, Cloud Foundry, AWS Elastic Beanstalk, …)
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Multiple service instances per host

Solution: Run multiple instances of different services on a host (Physical or Virtual 
machine).

Ways for deploying a service instance on a shared host

● Deploy each service instance as a JVM process

○ Tomcat or Jetty instances per service instance.

● Deploy multiple service instances in the same JVM.

○ Web applications or OSGI bundles.
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Multiple service instances per host

Advantages:

●More efficient resource utilization than the Service Instance per host pattern

Drawbacks:

●Risk of conflicting resource requirements
●Risk of conflicting dependency versions
●Difficult to limit the resources consumed by a service instance
●When multiple services are deployed in the same process

■ Difficult to monitor resource consumption of individual services 
■ Difficult to isolate services 
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Single service instance per host

Solution: Deploy each single service instance on its own host

Advantages:
● Services instances are isolated from one another
● No conflicting resource requirements or dependency versions
● A service instance can only consume at most the resources of a single host
● Straightforward to monitor, manage, and redeploy each service instance

Drawbacks:
● Less efficient resource utilization compared to Multiple Services per Host 

(because there are more hosts)
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Serverless deployment

Solution: 

● Use a deployment infrastructure that hides any concept of servers 
● The infrastructure takes your service’s code and runs it
● You are charged for each request based on the resources consumed

To deploy a service using this approach:

● Package the code (e.g. as a ZIP file)
● Upload it to the deployment infrastructure 
● Describe the desired performance characteristics
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Serverless deployment - Examples

Examples

● AWS Lambda, Google Cloud Functions, Azure Functions

● OpenWhisk

238



Serverless deployment

Advantages:
● Eliminates the need to spend time on managing low-level infrastructure.
● Focus on the functional code.
● Extremely elastic
● Pay for request

Drawbacks:
● Supports a few languages.
● Only suitable for stateless applications
● Cannot deploy a long running stateful application (database or broker).
● Limited “input sources”
● Functions must startup quickly
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Service instance per container

Solution: Package the service as a container image and deploy each service 
instance as a container

Examples: 

● Kubernetes

● Marathon/Mesos

● Amazon EC2 Container Service

Note: The most popular container technology is Docker 241



Service instance per container

Advantages:
● Scale up and down a service by changing the number of container instances.
● Encapsulates the details of the technology used to build the service.
● Limits on the CPU and memory consumed by a service instance
● Extremely fast to build.
● Extremely fast to start.

Drawbacks:
● Security issues
● The infrastructure for deploying containers is not as rich as the infrastructure 

for deploying virtual machines.
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Service Instance per VM

Solution: Package the service as a virtual machine image and deploy each service 
instance as a separate VM

● Example: Netflix packages each service as an EC2 AMI and deploys each 
service instance as a EC2 instance.
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Service Instance per VM

Advantages

● Straightforward to scale the service by increasing the number of instances

● The VM encapsulates the details of the technology used to build the service

● Each service instance is isolated

● A VM imposes limits on the CPU and memory consumed by a service 
instance

● IaaS solutions such as AWS provide a mature and feature rich infrastructure 
for deploying and managing virtual machines

○ Elastic Load Balancer

○ Autoscaling groups

○ …

Drawbacks

● Building a VM image is slow and time consuming
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Hydrid deployment

Service-per-container or Service-per-VM

for normal traffic (par per hour)

Serverless microservice

when request peak (fast startup/elasticity and pay per request)

Drawbacks: 2 implementations of the same MS
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Deployment

Service mesh

● dedicated infrastructure layer for handling service-to-service communication 
and global cross-cutting of concerns to make these communications more 
reliable, secure, observable and manageable.

● Examples: Istio, Linkerd, Maesh ...

Sidecar

● Communication proxy between microservices in the mesh

○ routing according load, version, mode (prod, dev), A/B testing, …

● Examples: Envoy, Spring Boot Sidecar 248
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Service Mesh

250



Service Mesh - Sidecar pattern
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Service Mesh - Example Istio
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Service Mesh - Example Maesh

Kubernetes

Traefik
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Case studies

Netflix

Devoxx
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Case Study : Netflix

Leader in subscription internet TV service

created in 1997

158 paid million members

~190 countries, 10s of languages

1000s of device types

Microservices hosted on AWS

Open-source for Microservices platforms

Josh Evans – Engineering Leader
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Case Study : Netflix
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Case Study : Netflix
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Case Study : Netflix
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Case Study : Netflix
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Case Study : Netflix
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Case Study : Netflix

Performance Debugging
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Extra : Netflix Backend

https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3 

267

https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3


Case Study : Devoxx

Annual Java, Android and HTML5 community conference

started in 2001 by the Belgium JUG

Biggest vendor-independent Java conference in the world

Devoxx Belgium 2017 : 3400 attendees from 40 different countries

Several regional and national Devoxx + Devoxx Kids

Need for a conference management system

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
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Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
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Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
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Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
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Microservices Benchmarks

TrainTicket

TeaStore

DeathStarBench

● Research paper: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf 
● Code available from: https://github.com/delimitrou/DeathStarBench/
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Microservices and FinOps

Distributed tracing for FinOps and compliance
https://horovits.medium.com/observability-into-your-finops-taking-distributed-tracin
g-beyond-monitoring-48a51e32e78a
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Resources



Books about Microservices
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More books about Microservices
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