
Microservices
Architecture

Didier Donsez, Vivien Quéma
Laboratoire d’Informatique de Grenoble

ERODS → DRAKKAR

Agenda
● Microservices Architecture

○ Motivations: Monolithic vs
Microservice

○ Patterns for microservices
■ Data management
■ Transactional messaging
■ Inter-service communications
■ Service discovery
■ Security
■ Observability
■ Deployment
■ Etc.

○ Case studies : Netflix, Devoxx

● Practices with JHipster
○ Monolith generation
○ Code génération with OpenAPI

(swagger).
○ Monolith deployment with Docker
○ Micro-services refactoring and

generation
○ Micro-services deployment with

Docker
○ Micro-services deployment with

Kubernetes on GCP

2

https://github.com/mastering-microservices/
https://github.com/mastering-microservices/

IT Architecture Trends

App “Desagregation” Evolution

FastIT

7

App “Desagregation” Evolution

Monolith to Serverless (function as a service)

Source : Dr. Paul Fremantle, CTO WSO2
8

App “Desagregation” Evolution

More and more endpoints to integrate

Source : Dr. Paul Fremantle, CTO WSO2
9

FastIT: a motivation for Microservices
● Enterprise IT organization model for bringing the agility and the innovation

required to produce (new) digital services

● Goals :
− accelerate all phases prior to placing on the market
− simplify the operational phase
− opposes long-cycle projects and ITIL-type processes

● Medium: Reorganizing the methods around the product to be delivered
− Design: lean startup, A/B testing, design thinking, user centric, hackathon,

…
− Development: mockup/prototype, code generation, agility, devops, …
− Production: on-demand cloud architectures, cloud native applications,

Open API, microservices, ...
● Expectations

− Minimum Viable Product (MVP)
● Answering to the functional and qualitative expectations of end-users

10

https://en.wikipedia.org/wiki/ITIL
https://en.wikipedia.org/wiki/Lean_startup
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/Design_thinking
https://en.wikipedia.org/wiki/User-centered_design
https://en.wikipedia.org/wiki/Hackathon
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Open_API
https://en.wikipedia.org/wiki/Minimum_viable_product

Exercice: The cost of the software

Use http://softwarecost.org/tools/COCOMO/ for estimating Effort, Price and Schedule
of the development of

● (nominal) software of 20000 loc “from scratch”
● (nominal) software of 20000 loc for a generated boiler plate (1000 reused, 2000

added)
● reliable software such as Linux Kernel, Apache HTTPD, MySQL, Wordpress,

Mattermost, Faveo Helpdesk …

Cost per Person-Month (Dollars): France (Paris, Grenoble), UK, Swizterland, India, Morroco,
Hong Kong, Shenzen, Madagascar …

11

http://softwarecost.org/tools/COCOMO/
https://en.wikipedia.org/wiki/Boilerplate_code
https://openhub.net/p/linux/estimated_cost
https://openhub.net/p/apache/estimated_cost
https://openhub.net/p/mysql/estimated_cost
https://openhub.net/p/wordpress
https://openhub.net/p/Mattermost/estimated_cost
https://openhub.net/p/faveo-helpdesk/estimated_cost
https://survey.stackoverflow.co/2024/work#salary-comp-total

The software lifecycle of an artifact/API

Versioning schema (increment policy)
<major>.<mini>[.<micro>][-<qualifier>[-<buildnumber>]]
Major : major changes (except 0 to 1) : no retro-compatibility guarantee
Mini (or Micro): ajouts fonctionnels. retro-compatibility garantie
Micro (or Nano or Patch) : corrective maintenance (bug fix, perf fix)

Qualifiers
alpha1 : alpha version (very unstable and no completed) for dev team
beta1, b1, b2 : beta version (unstable). can be ea
rc1, rc2 : release candidate
m1, m2 : milestone
ea : early access (restricted to a set of volunteers/guinea pigs …)
rtm : release to marketing
lts : long term support (3 – 5 - 10 years)
ga : general availability or general acceptance
sp : service pack
SNAPSHOT (Maven) : under construction (before rc1, rc 2 …)
RELEASE : frozen final

See http://en.wikipedia.org/wiki/Software_release_life_cycle et https://semver.org/

12

https://en.wikipedia.org/wiki/Long-term_support
http://en.wikipedia.org/wiki/Software_release_life_cycle
https://semver.org/

The software lifecycle of an artifact/API

Google Gmail

April 1, 2004 (limited beta release). exited the beta status on July 7, 2009.

Windows 10

July 29, 2015 (GA) - October 15, 2025 (official end)

Microsoft Popfly

May 18, 2007 (Beta) - July 16, 2009 (announced) - August 24, 2009 (discontinued)

Google PowerMeter

October 5, 2009 (Beta) - June 2011 (announced) - September 16, 2011 (discontinued)

13

https://en.wikipedia.org/wiki/Gmail
https://en.wikipedia.org/wiki/Software_release_life_cycle
https://en.wikipedia.org/wiki/Windows_10
https://en.wikipedia.org/wiki/Microsoft_Popfly
https://en.wikipedia.org/wiki/Google_PowerMeter

What are microservices?

● An architectural style that structures an application as a collection of
loosely coupled services, which implement business capabilities.

● The microservice architecture enables
○ the continuous delivery/deployment of large, complex applications.
○ an organization to evolve its technology stack

15

What are microservices?

The microservice architecture:

● Simplifies testing and
enables components to be
deployed independently

● Structures the engineering
organization as a collection
of small (6-10 members*),
autonomous teams, each
of which is responsible for
one or more services

16aka Two-pizza team

Monolithic vs Microservice Architecture

● Example of a server-side enterprise application:
○ Handles requests (HTTP requests and messages) by executing business

logic;
○ Accesses a database;
○ Exchanges messages with other systems;
○ Returns a HTML/JSON/XML/Protobuf/FlatBuffers response

● The application:
○ Must support a variety of different clients including desktop browsers,

mobile browsers and native mobile applications.
○ Might expose an API for 3rd parties to consume.
○ Might also integrate with other applications (internal or 3rd parties) via either

web services or a message broker. 17

Monolithic vs Microservice Architecture -
Requirements

○ New team members must quickly become productive
○ The application must be easy to understand and modify
○ Practice continuous deployment of the application
○ Run multiple copies of the application on multiple machines in order to

satisfy scalability and availability requirements
○ Take advantage of emerging technologies (frameworks, programming

languages, etc)

18

Monolithic architecture

● Examples of monolithic architectures:
○ a single Java WAR file
○ a single directory hierarchy of Rails xor

NodeJS code
○ +
○ a relational database (Postgres, MySQL)

xor
a NoSQL database (MongoDB)

19

Monolithic architecture - Drawbacks

● Large monolithic code base
● Continuous deployment is difficult
● Scaling the application can be difficult
● Slow web container startup
● Obstacle to scaling development
● Requires a long-term commitment to a technology stack

20

Microservice architecture

● The application is structured as a set of loosely
coupled, collaborating services

● Each service implements a set of narrowly,
related functions

● Services communicate using either:
○ synchronous protocols such as

HTTP/REST
○ or asynchronous protocols such as

AMQP.
● Services can be developed and deployed

independently of one another
● Each service has its own database in order to

be decoupled from other services

21

The Scale Cube

Three dimension scalability model

22

Microservice architecture: benefits

● Enables the continuous delivery and deployment of large, complex
applications

○ Better testability
○ Better deployability
○ Autonomous teams

● Each microservice is (relatively) small
○ Easier to understand
○ The application starts faster
○ Improved fault isolation.

● Eliminates any long-term commitment to a technology stack

23

Microservice architecture: drawbacks

● Additional complexity of creating a distributed system.

○ Testing

○ Inter-service communication mechanism

○ Distributed transactions

○ Data redundancy

● Deployment complexity

● Increased memory consumption

24

When to use the microservice architecture?

Depends on

● application scope
● team size
● team skill
● time to market
● infrastructure manpower
● user base

25

Choosing a monolithic architecture

● application scope : small and well-defined and remains simple
● team size : small (up to 8 peoples)
● team skill : novice and intermediate
● time to market : critical
● infrastructure manpower : do not want to spend time
● user base : small or specific set of users in the enterprise app

26

Choosing a microservice architecture

● application scope : large and well defined
● team size : large
● team skill : good and confident in advanced MS patterns
● time to market : not critical, long-term vision
● infrastructure manpower : spend time on infra and in

monitoring
● user base : huge or growing

27

Microservice architecture - 101 patterns
https://microservices.io/patterns

28

Microservice architecture - 101 patterns
https://microservices.io/patterns

29

Microservices Patterns
Application Patterns

30

Microservices Patterns
Application Infrastructure Patterns

Communication patterns

31

Microservices Patterns
Infrastructure Patterns

32

Microservices Patterns
Decomposition

33

How to decompose the application into services?

● Requirements:
○ The architecture must be stable
○ Services must be cohesive
○ Services must conform to the Common Closure Principle
○ Services must be loosely coupled
○ Services should be testable
○ Services should be small
○ Development teams should be autonomous

34

https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Package_principles#Principles_of_package_cohesion

How to decompose the application into services?

Two strategies exist:

● Decompose by business capability

● Decompose by domain-driven design subdomain

Enforce the SRP (Single Responsibility Principle) pattern

35

Microservices Patterns
Decomposition

36

Decompose by business capability

Definition: A business capability is a concept from business architecture modeling. It is
something that a business does in order to generate value.

Example:

●Order Management is responsible for orders
●Customer Management is responsible for customers

37

Decompose by business capability

38

Decompose by business capability

● Products management
● Cart management
● Shipping Management
● Order Management
● Payment management
● Shipping Management
● Marketing Content Management
● Notifications (Email/SMS) Management

39

Decompose by business capability

Subcapabilities

Order management

● Order processing
● Invoice Management

Shipping Management

● Order Tracking
● Fulfillment

Marketing Content Management

● Content Management
● Campaign Management
● Discount Coupons Management
● Email/SMS Management

40

Decompose by business capability

● Result in
○ Products Service
○ Inventory Service
○ Shopping Cart Service
○ Ordering Service
○ Shipping Service
○ Payment Service
○ Invoice Service
○ Communication Service
○ Shipment Tracking & fulfillment Service
○ Content Service
○ Coupon Management Service

41

Decompose by business capability

Advantages:

● Stable architecture since the business capabilities are relatively stable

● Development teams are organized around delivering business value rather

than technical features

● Services are cohesive and loosely coupled

Issues:

● Identifying business capabilities is sometimes difficult

42

Microservices Patterns
Decomposition

43

Decompose by subdomain

Define services corresponding to Domain-Driven Design (DDD) subdomains.
Subdomains can be classified as follows:

● Core - key differentiator for the business and the most valuable part of the
application

● Supporting - related to what the business does but not a differentiator.

● Generic - not specific to the business

44

Decompose by subdomain

Advantages:

● Stable architecture since the subdomains are relatively stable

● Development teams are cross-functional, autonomous, and organized around
delivering business value rather than technical features

● Services are cohesive and loosely coupled

Issues

● Identifying subdomains can be difficult

46

Single responsibility pattern

Defined in 2006 by Robert C. Marting, a.k.a. Uncle Bob, in the book
Agile Principles, Patterns, And Practices in C#

47

https://www.amazon.it/Agile-Principles-Patterns-Practices-C/dp/0131857258

Single responsibility pattern

Every module or class should have
responsibility over a single part of
the functionality provided by the
software, and that responsibility
should be entirely encapsulated by
the class.

48

Single responsibility pattern

at least two responsibilities:
1) drawing a rectangle on a GUI
2) calculating the area of that rectangle.

49

Single responsibility pattern

50

Microservices Patterns
Data patterns

51

How to maintain data consistency?

● Database per Service pattern
● Shared Database (anti) pattern

Several patterns exist to maintain data consistency and perform queries

52

Microservices Patterns
Database architecture

53

Database architecture

Remark: CUSTOMER_ID is a foreign key referencing CUSTOMER
54

Database architecture

Requirements:

● Services must be loosely coupled
● Transactions must enforce invariants that span multiple services
● Transactions need to query data that is owned by multiple services
● Transactions may be long-running
● Some queries must join data that is owned by multiple services
● Different services have different data storage requirements

55

Reminder: Transaction processing

Short-running : several milliseconds to several minutes

OLTP systems

Debit-Credit (TPC-A), Order (TPC-C) …

Standards (Xopen DTP, OSI/TP…) for Two Phase Commit protocol

Robust and scalable Transaction Monitors (Sabre, …)

Long-running : several hours to several days

B2B usecases (next slides)

No standard, several research works (Sagas, Contract, Flex, ACTA, …)

http://www.tpc.org/

56

Reminder: Transaction processing
The X/Open DTP Model

AP (Application Program)

AP with STDL / AP with other prog. lang.

OSI TP
To other TP domains

TM
(Transaction Mnger)

TXSQL, ISAM
...

XA XA+

TxRPC, XATMI
CPI-C

RM
(Ressource Mnger)

CRM
(Comm. Rsrc. Mnger)

XAP-TP

From Bernstein et Newcomer
1997 57

Long-running transactions

Several standards use compensation transactions : BTP, BWTP, XTML, ...
58

Travel
Coordina

tor

Flight

Hotel

Long-running transactions : The travel agency

LTM

Hotel
Service

GTM
Travel

Service

LTM

Flight
Service

SO
AP

R
EST

Business

TP
TP

TP

TP
TP

TP

TP API

API

book(Georges V)

book(AF)

59

Microservice Patterns
Database architecture

60

Shared Database
Use a (single) database that is shared by multiple services

Each service freely accesses data owned by other services using
local ACID transactions

BEGIN TRANSACTION
…
SELECT ORDER_TOTAL
 FROM ORDERS WHERE CUSTOMER_ID = ?
…
SELECT CREDIT_LIMIT
FROM CUSTOMERS WHERE CUSTOMER_ID = ?
…
INSERT INTO ORDERS …
…
COMMIT TRANSACTION

61

Shared Databases

Advantages:

● Familiar and straightforward ACID transactions to enforce data consistency

● A single database is simpler to operate

Drawbacks:

● Development time coupling

● Runtime coupling

● Inadequate for long-running or long-lived transactions

● One single database might not fit all requirements
62

https://en.wikipedia.org/wiki/Long-lived_transaction

Decomposition Patterns
Database architecture

63

Database per Service

64

Database per Service

The service’s database is effectively part of the implementation of that service.

Different possibilities:

● Private-tables-per-service (same DBMS for all μS)

● Schema-per-service (same DBMS for all μS)

● Database-server-per-service

65

Database per Service
Advantages:
● Services are loosely coupled
● Different databases can be used (e.g. key-value store, document database,

time series database, graph database)
Drawbacks:
● Difficult to implement transactions that span multiple services
● Difficult to implement queries that join data in multiple databases
● Complexity of managing multiple SQL and NoSQL databases

66

Database per Service

Some patterns provide solutions to the previously mentioned drawbacks

● API Composition - the application performs the join rather than the database
● Command Query Responsibility Segregation (CQRS) - maintain one or more

materialized views that contain data from multiple services

67

Microservices Patterns
Data consistency

68

Maintaining consistency

● What is consistency ?

○ Paolo Viotti, Marko Vukolic: Consistency in Non-Transactional Distributed Storage Systems.
 ACM Comput. Surv. 49(1): 19:1-19:34 (2016)

● The “old way”: 2 phase commit

● The microservice way: transactions Saga

69

https://dblp.org/db/journals/csur/csur49.html#ViottiV16
https://dblp.org/db/journals/csur/csur49.html#ViottiV16

The Two-Phase Commit Protocol

Achieve ACID properties over distributed X/Open ressources (MOM, RDBMS)

ACID for Atomicity, Consistency, Isolation, Durability

● 2PC Actors
○ Initiator (the application)
○ Coordinator (ie transaction monitor)
○ Ressources (aka participants, slaves)

70

The Two-Phase Commit Protocol : without failure

begintrans

begintrans

Init+CoordDBMS1 DBMS2

reqSQL
result

reqSQL
result

reqSQL
result

prepare prepare
votecommit

votecommit

Gcommit Gcommit

prepare prepare
votecommit

voteabort

Gabort Gabort

Init+CoordDBMS1 DBMS2

71

The Two-Phase Commit Protocol : with failure

prepare prepare
votecommit

votecommit

Gcommit Gcommit

prepare prepare
votecommit

votecommit

GCommit Gcommit

resume resume
votecommitvotecommit

Init+CoordDBMS1 DBMS2 Init+CoordDBMS1 DBMS2

72

The Two-Phase Commit Protocol : with failure

prepare prepare
votecommit

Gabort Gabort

prepare prepare
votecommit

votecommit

GCommit Gcommit

resume
Gabort

resume
Gcommit

timeout

Init+CoordDBMS1 DBMS2 Init+CoordDBMS1 DBMS2

73

Microservices Patterns
Data consistency

74

Saga Transactions

● Business transaction that spans multiple services are
implemented as a saga

● A saga is a sequence of local transactions
● Each local transaction updates the database and publishes a

message or event to trigger the next local transaction in the
saga

● If a local transaction fails because it violates a business rule
then the saga executes a series of compensating transactions
that undo the changes that were made by the preceding local
transactions 75

Saga Transactions

76

Saga Transactions : without failure

1) Compensate
Customer

2) Compensate
Order 1

77

Saga Transactions Coordination

Two ways for coordinating sagas:

● Choreography

● Orchestration

78

Choregraphy-based Saga

79

Orchestration-based Saga

80

Example : Choregraphy-based Saga @ Zenaton

https://gillesbarbier.medium.com/building-an-event-driven-orchestration-engine-bf62d45aef5d

Event broker:
RabbitMQ then
Apache Pulsar

81

https://gillesbarbier.medium.com/building-an-event-driven-orchestration-engine-bf62d45aef5d

Saga Transactions

Advantages:
● Allows maintaining data consistency across multiple services without using

distributed transactions
Drawbacks
● Complex programming model (workflow oriented)
● Complex design of compensating transactions that explicitly undo

changes made earlier in a saga
● Compensation is not always possible
● Compensation can fail

Issues : event/message broking
● A service must be able to atomically update its database

and publish a message/event 82

Saga vs BWTP
BWTP transaction completion

Calling Syst.One.com Two.com

activity

status=OK
commit commit

status=KO

status=OK

cancel compen
sate

status=OK

status=OK

Calling Syst.One.com Two.com

activity

status=OK

retry
status=OK

status=KO
status=OK

Calling Syst.One.com Two.com

activity activity activity activity
status=OK

compen
satestatus=KO

timeout

compen
satestatus=OK

84

Saga vs BWTP
BWTP compensation cascade

Calling Syst.One.com Two.com

status=OK

cancel

status=OK

Three.com

activity
status=OK

compen
satestatus=OK

status=KO

activity activity

cancel

status=OK

85

Microservices Patterns
Data consistency

86

Aggregate

An aggregate is a graph of objects that can be treated as a unit

Example: “When you drive a car, you do not have to worry about moving the wheels forward, making the engine combust with
spark and fuel, etc.; you are simply driving the car. In this context, the car is an aggregate of several other objects and serves
as the aggregate root to all of the other systems.” (Wikipedia)

A concept from DDD (Domain-Driven Design)

Aggregates produce Domain events.

87

Microservices Patterns
Data consistency

88

Domain event

A service often needs to publish events when it updates its data.

Used by transaction Saga and CQRS.

A concept from DDD (Domain-Driven Design)

Domain events are emitted by Aggregates

ie OrderCreated, CreditReserved, CreditLimitExceeded ...

https://paucls.wordpress.com/2018/05/31/ddd-aggregate-roots-and-domain-events-publication/

https://en.wikipedia.org/wiki/Domain-driven_design 89

https://paucls.wordpress.com/2018/05/31/ddd-aggregate-roots-and-domain-events-publication/
https://en.wikipedia.org/wiki/Domain-driven_design

Microservices Patterns
Data consistency

90

Event sourcing

How to reliably/atomically update the database and publish messages/events?

2PC is not an option!

A concept from DDD (Domain-Driven Design)

91

Event sourcing

Event sourcing persists the state of a business entity as a sequence of state-
changing events

Whenever the state of a business entity changes, a new event is appended to the
list of events

Applications persist events in an event store, which is a database of events

The event store behaves like a message broker

92

Event sourcing - Example

93

Event sourcing

Benefits
● Solves one of the key problems in implementing an event-driven architecture

and makes it possible to reliably publish events whenever state changes.
● Provides a reliable audit log of the changes made to a business entity
● Makes it possible to implement temporal queries that determine the state of

an entity at any point in time.
Drawbacks
● Different and unfamiliar style of programming.
● The event store is difficult to query since it requires typical queries to

reconstruct the state of the business entities.
Related

● Event sourcing implements the Audit logging pattern. 94

https://microservices.io/patterns/observability/audit-logging

Microservices Patterns
Querying

96

Querying patterns

How to implement a query that retrieves data from multiple services in a
microservice architecture?

Remark: In shared database, JOIN requests between several tables

97

Microservices Patterns
Querying

98

API Composition

99

API Composition

Advantages

● A simple way to query data in a microservice architecture

Drawbacks

● Some queries would result in inefficient, in-memory joins of large datasets.

Remark: Research works on Distributed Database Systems : Semi-Joins …

@see ACM SIGMOD, VLDB conf proceeding
100

API Composition : Example

From https://ajay-yadav109458.medium.com/queries-in-microservice-79a657a928af
101

https://ajay-yadav109458.medium.com/queries-in-microservice-79a657a928af

Microservices Patterns
Querying

102

Command Query Responsibility Segregation
(CQRS)

Isolate read (query) and write (command) into services

Create a (read-only) view database that replicates the data
The database is populated by subscribing to Domain
events published by services
This patterns allows separating command and query
components

Remark: Functional and non-functional requirements are
different for read and write

● Write : transactional (consistency, isolation, ...),
Schema Normalization

● Read : Schema Denormalization for perf, scalability

103

Non-CQRS versus CQRS

https://ajay-yadav109458.medium.com/queries-in-microservice-79a657a928af
104

Command Query Responsibility Segregation
(CQRS)

Advantages:
● Supports multiple denormalized views that are scalable and performant
● Improved separation of concerns = simpler command and query models
● Necessary in an event sourced architecture

Drawbacks:
● Increased complexity
● Potential code duplication
● Replication lag/eventually consistent views

105

Microservices Patterns
Testing

107

Service Component Test

● How to easily test a service?

○ End to end testing (i.e. tests that launch multiple services) is difficult, slow, and expensive.

● Need to design a test suite that tests a service in isolation using test doubles
for any services that it invokes.

● Example: Spring Cloud Contract

108

Service Component Test

Advantages:
● Testing a service in isolation is easier, faster, more reliable and cheap

Drawbacks:
● Tests might pass but the application will fail in production

Issues:
● How to ensure that the test doubles always correctly emulate the behavior of

the invoked services?

109

Microservices Patterns
Testing

110

Consumer-side contract test

Test for verifying that the client of a service can communicate with the service

111

Microservices Patterns
Testing

112

Consumer-driven contract test

How to easily test that a service provides an API that its clients expect?

Need for a test suite for a service that is written by the developers of another
service that consumes it.

The test suite verifies that the service meets the consuming service’s
expectations.

Example: Spring Cloud Contract.

113

Consumer-driven contract test

Advantages

● Testing a service in isolation is easier, faster, more reliable and cheap

Drawbacks

● Tests might pass but the application will fail in production

Issues

● How to ensure that the consumer provided tests match what the consumer
actually requires?

114

Microservices Patterns
UI (User Interface)

115

UI patterns

Services are developed by business capability/subdomain-oriented teams that are also responsible for the user experience

Some UI screens/pages display data from multiple service

For instance, an e-commerce product detail page can display:

●Basic information about the book such as title, author, price, etc.
●Your purchase history for the book
●Availability
●Buying options
●Other items that are frequently bought with this book
●Other items bought by customers who bought this book
●Customer reviews
●Sellers ranking
●…

Each data item corresponds to a separate service → how it is displayed is the responsibility of a different team

How to implement a UI screen or page that displays data from multiple services?

116

Microservices Patterns
UI (User Interface)

117

Server-side page fragment composition

Each team develops a web application that generates an HTML fragment

The UI team develops the page templates that build pages by performing server-
side aggregation of the service-specific HTML fragments.

118

Microservices Patterns
UI (User Interface)

119

Client-side UI composition

Each team develops a client-side UI component that implements the region of the
page/screen for their service.

The UI team implements the page skeletons that build pages/screens by
composing multiple, service-specific UI components.

Remark: SPA frameworks are component-based and can load dynamically modules
(ie NGx). Each service team provide a set of UI components.

120

Microservices Patterns

121

Microservices Patterns
Communication patterns

Communication patterns

122

Microservices Patterns
Communication style

Communication patterns

123

Inter-service communications patterns

There exist various inter-service communication protocols

● Remote Procedure Invocation

● Messaging

● Domain-specific protocol(s)

124

Microservices Patterns
Communication style

Communication patterns

125

Remote Procedure Invocation (RPI)

A client uses a request/reply-based protocol to make requests to a service

There are numerous examples of RPI technologies

● REST

● gRPC (Protobuf), Thrift, Avro

● OMG CORBA

126

Remote Procedure Invocation (RPI)

Advantages
● Simple and familiar
● Simpler system since there is no intermediate broker

Drawbacks
● not other interaction patterns such as notifications, request/async response,

publish/subscribe, publish/async response
● the service must be available for the duration of the interaction

Issues
● Client needs to discover locations of service instances
● API/schema versioning, untagged data and dynamic typing (Avro)

127

Microservices Patterns
Communication style

Communication patterns

128

Messaging

Perform inter-service communication
by exchanging messages over messaging channels

Examples of messaging technologies

● AMQP (XA ressource)

● MQTT (Unreliable backhauls in IoT networks)

Examples of messaging technologies

● Apache Kafka (intra-datacenter)

● Apache Pulsar

● RabbitMQ
129

Messaging

Advantages:
● Loose coupling between clients and services
● Improved availability
● Supports a variety of communication patterns (request/reply, notifications,

request/async response, publish/subscribe, publish/async response))
Drawbacks:
● Additional complexity of message broker
● Implementing request/reply-style communication is more complex

Issues:
● Client needs to discover location of message broker
● Message serialization : Protobuf, Thrift, Avro ...

130

Microservices Patterns
Communication style

Communication patterns

131

Domain-specific protocols

Perform inter-service communication using domain-specific protocols
or with 3rd party legacy systems

Examples of domain-specific protocols:

● File transfer protocols: FTP, SFTP, SCP, Sharepoint ...

● Email protocols: SMTP, IMAP

● Media streaming protocols: RTMP, HLS, HDS

● Conferencing : SIP, WebRTC

● Realtime : OMG DDS & RTPS, DDS-XRCE

● Cluster (Sci) : MPI (Broadcast, Scatter)

● ...

132

Microservices Patterns

Communication patterns

133

Microservices Patterns
Transactional Messaging

Communication patterns

134

Transaction outbox pattern

A service typically need to atomically update the database and publish messages/events.

2PC is not an option!

135

Transactional Outbox Pattern

136

Transaction outbox pattern

Advantages
● No 2PC

Drawbacks
● Potentially error prone since the developer might forget to publish the

message/event after updating the database.

137

Microservices Patterns
Transactional Messaging

Communication patterns

138

Transaction log tailing
Problem: How to publish messages/events into the outbox in the database to
the message broker?

139

Transaction log tailing

Advantages

● No 2PC

● Guaranteed to be accurate

Drawbacks

● Relatively obscure (but becoming increasingly common)

● Requires database specific solutions

● Tricky to avoid duplicate publishing
140

Microservices Patterns
Transactional Messaging

Communication patterns

141

Polling publisher

Solution : Publish messages by polling the outbox in the database.

Advantages

● Works with any SQL database

Drawbacks

● Tricky to publish events in order

● Not all NoSQL databases support this pattern

142

Microservices Patterns
Reliability

Communication patterns

143

Circuit Breaker

Context

service is unavailable

service is exhibiting high latency

lead to resource exhaustion in the caller and failure cascades

Problem: How to prevent a network or service failure from cascading to other
services?

144

Circuit breaker

Client-side Proxy (RPI pattern) that functions in a similar fashion to an electrical
circuit breaker.

● When the number of consecutive failures crosses a threshold, the circuit
breaker trips

● After the timeout expires the circuit breaker allows a limited number of test
requests to pass through

● If those requests succeed the circuit breaker resumes normal operation

● Otherwise, if there is a failure the timeout period begins again

145

Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
146

Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
147

Circuit Breaker

Infography from https://digitalvarys.com/what-is-circuit-breaker-design-pattern/
148

Circuit Breaker

Advantages:

● Services handle the failure of the services that they invoke

Drawbacks:

● choose timeout values without creating false positives or introducing
excessive latency.

Exemple : Netflix Hystrix

https://dzone.com/articles/circuit-breaker-design-pattern-using-netflix-hystr

149

https://dzone.com/articles/circuit-breaker-design-pattern-using-netflix-hystr

Microservices Patterns
Observability

Communication patterns

150

Exception tracking

Errors sometimes occur when handling requests

● When an error occurs, a service instance throws an exception

Problem: How to understand the behavior of an application and troubleshoot
problems?

● Exceptions must be de-duplicated, recorded, investigated by developers and
the underlying issue resolved

● Any solution should have minimal runtime overhead

151

Exception tracking

Solution: Report all exceptions to a centralized exception tracking service that
aggregates and tracks exceptions and notifies developers

Advantages

● Make it easy to view exceptions and track their resolution

Drawbacks

● The exception tracking service is additional infrastructure

152

Microservices Patterns
Observability

Communication patterns

153

Log aggregation

Service instances write information to a log files in a standardized format

● The log file contains errors, warnings, information and debug messages

Problem: How to understand the behavior of an application and troubleshoot
problems?

● Any solution should have minimal runtime overhead

154

Log aggregation

Solution:
● Use a centralized logging service that aggregates logs from each service

instance
● Users can:

● search and analyze the logs
● configure alerts that are triggered when certain messages appear in the

logs
Examples: AWS Cloud Watch
Issue: handling a large volume of logs requires substantial infrastructure

155

Microservices Patterns
Observability

Communication patterns

156

Distributed tracing

Requests often span multiple services

To handle a request, a service often perform several operations: database queries,
message publications, etc.

Problem: How to understand the behavior of an application and troubleshoot
problems?

● External monitoring only tells you the overall response time and number of
invocations - no insight into the individual operations

● Any solution should have minimal runtime overhead

● Log entries for a request are scattered across numerous logs
157

Distributed tracing

Solution: Instrument services to:
● Assign each external request a unique external request id
● Pass the external request id to all services that are involved in handling the

request
● Include the external request id in all log messages
● Record information (e.g. start time, end time) about the requests and

operations performed when handling an external request in a centralized
service

Note: this instrumentation might done by a Microservice Chassis framework.

158

Distributed tracing

159

Distributed tracing

Advantages:

● Useful insight into the behavior of the system including the sources of latency

● Enables developers to see how an individual request is handled by searching
across aggregated logs for its external request id

Drawbacks:

● Aggregating and storing traces can require significant infrastructure

Examples

● Zipkin, Jaeger, Opentelemetry, Opentracing, Datadog ... 160

Getting Started With Observability for Distributed Systems
NICOLAS GIRON, SRE, KUMOMIND | HICHAM BOUISSOUMER, SRE, KUMOMIND

161

Microservices Patterns
Observability

Communication patterns

162

Health Check API

A service instance can be incapable of handling requests yet still be running
● For example, it might have ran out of database connections

When this occurs:
● The monitoring system should generate a alert
● The load balancer or service registry should not route requests to the failed

service instance

Problem: How to detect that a running service instance is unable to handle
requests?

163

Health Check API

Solution:

● Implement, in each service, an health check API endpoint (e.g. HTTP /health)
that returns the health of the service

● The health monitoring service (service registry or load balancer) periodically
invokes the endpoint to check the health of the service instance

164

Health Check API

Advantages

● Enables the health of a service instance to be periodically tested

Drawbacks

● The health check might not be sufficiently comprehensive and so requests
might still be routed to a failed service instance

165

Microservices Patterns

Communication patterns

166

Log deployments and changes

Problem: How to understand the behavior of an application and troubleshoot
problems?

● Note that it useful to track when deployments and other changes occur since
issues usually occur immediately after a change

Solution: Log every deployment and every change to the (production) environment

167

Log deployments and changes

Examples:

● A deployment tool can publish a pseudo-metric whenever it deploys a new
version of a service

● This metric can then be displayed alongside other metrics enabling changes
in application behavior to be correlated with deployments

AWS Cloud Trail provides logs of AWS API calls

168

https://aws.amazon.com/cloudtrail/

Log deployments and changes

Advantages

● Faster resolution of problems: deployments and changes can easily be
correlated with observed issues

169

Microservices Patterns

Communication patterns

170

Audit Logging

Problem: How to understand the behavior of users and the application and
troubleshoot problems?

● It is useful to know what actions a user has recently performed: customer
support, compliance, security, etc.

Solution: Record user activity in a database.

171

Audit Logging

Advantages

● Provides a record of user actions

Drawbacks

● The auditing code is intertwined with the business logic → complexifies the
business logic

172

Microservices Patterns

Communication patterns

173

Application Metrics

Problem: How to understand the behavior of an application and troubleshoot
problems?
● The solution should have minimal runtime overhead

Solution:
● Instrument a service to gather statistics about individual operations
● Aggregate metrics in centralized metrics service
● Provides reporting and alerting

Two models for gathering metrics: push, pull

174

Application Metrics

Examples:

● Instrumentation libraries

○ Coda Hale/Yammer Java Metrics Library

○ Prometheus

○ Telegraf

● Metrics aggregation services

○ Prometheus

○ Kapacitor

○ AWS Cloud Watch

175

Application metrics

Advantages:

● Provide deep insight into application behavior

Drawbacks:

● Metrics code is intertwined with business logic

Issues:

● Aggregating metrics can require significant infrastructure

176

Microservices Patterns

Communication patterns

177

Microservice Chassis

● Many cross-cutting concerns:
○ Externalized configuration
○ Logging
○ Health checks
○ Metrics
○ Distributed tracing

● Tens or hundreds of services
○ Developers cannot afford to spend, for each service, a few days configuring

the mechanisms to handle cross-cutting concerns

178

Microservice Chassis

Requirements:
● Creating a new microservice should be fast and easy

Solution: Build your microservices using a microservice chassis framework, which
handles cross-cutting concerns

Examples of microservice chassis frameworks
● Java

○ Spring Boot and Spring Cloud, Dropwizard

● Go
○ Gizmo, Micro, Go kit

179

Microservice Chassis

Advantages

● Developers can quickly get started with developing a microservice

Drawbacks

● Obstacle to adopting a new programming language or framework
○ Requires a microservice chassis for each programming language/framework

180

Microservices Patterns

Communication patterns

181

Externalized Configuration

An application typically uses one or more infrastructure and 3rd party services:
● Infrastructure services: Service registry, Message broker, Database server
● 3rd party services: payment processing, bulk email and messaging, etc.

Problem: How to enable a service to run in multiple environments without
modification?
● A service must be provided with configuration explaining how it connects to

the external/3rd party services
● A service must run in multiple environments (dev, test, qa, staging,

production) without modification and/or recompilation
● Different environments have different instances of the external/3rd party

services:
○ QA database vs. production database
○ Test credit card processing account vs. production credit card processing account

182

Externalized Configuration

Solution:

● Externalize all application configuration including the database credentials and
network location

● On startup, a service reads the configuration from an external source, e.g. OS
environment variables, etc.

183

Externalized Configuration

Example:

@Component

class RegistrationServiceProxy @Autowired()(restTemplate: RestTemplate) extends RegistrationService {

 @Value("${USER_REGISTRATION_URL}")

 var userRegistrationUrl: String = _

web:

 image: sb_web

 ports:

 - "8080:8080"

 links:

 - eureka

 environment:

 USER_REGISTRATION_URL: http://REGISTRATION-SERVICE/user

Note:
REGISTRATION-SERVICE
is the logical name of the
service. It is resolved
using
Client-side discovery.

conf. injected at startup

application-dev.yml

dev Profile

184

https://microservices.io/patterns/client-side-discovery.html

Externalized Configuration

Advantages:

● The application runs in multiple environments without modification and/or
recompilation

Issues:

● How to ensure that when an application is deployed the supplied configuration
matches what is expected?

185

Microservices Patterns

Communication patterns

186

Access Token

The API gateway authenticates requests, and forwards them to the services,
which might in turn invoke other services.

Problem: How to communicate the identity of the requestor to the services that
handle the request?

Solution:

● The API Gateway authenticates the request and passes an access token that
securely identifies the requestor in each request to the services

● A service can include the access token in requests it makes to other services

187

Access Token

Advantages

● The identity of the requestor is securely passed around the system

● Services can verify that the requestor is authorized (RBAC) to perform an
operation

Examples

● JWT, OAuth2
● Identity managers: Keycloak, OpenAM, Okta (IMaaS) …

Exercice: have glance on JWT exchanged between JHipster generated frontend and
backend and decode then with https://jwt.io/ 188

https://jwt.io/

Microservices Patterns

189

Microservices Patterns

190

Service Discovery

Services need to call one another

● Monolithic application: services invoke one
another through language-level method or
procedure calls

● Traditional distributed system: services run at
fixed, well known locations (hosts and ports)

● Microservice-based application: virtualized or
containerized environments where the number
of instances of a service and their locations
changes dynamically

191

Service Discovery

How does the client of a service (the API gateway or another service) discover the
location of a service instance?

● Each instance of a service exposes a remote API
○ HTTP/REST, or Thrift etc. at a particular location (host and port)

● The number of services instances and their locations changes dynamically
● Virtual machines and containers are usually assigned dynamic IP addresses
● The number of services instances might vary dynamically (EC2 Autoscaling

Group …)

192

Microservices Patterns

193

Client-side Service Discovery

194

Client-side Service Discovery - Example

@Component

class RegistrationServiceProxy @Autowired()(restTemplate: RestTemplate) extends RegistrationService {

 @Value("${user_registration_url}")

 var userRegistrationUrl: String = _

 override def registerUser(emailAddress: String, password: String): Either[RegistrationError, String] = {

 val response = restTemplate.postForEntity(userRegistrationUrl,

 RegistrationBackendRequest(emailAddress, password),

 classOf[RegistrationBackendResponse])

 ...

}

195

Client-side Service Discovery - Example

@Configuration

@EnableEurekaClient

@Profile(Array("enableEureka"))

class EurekaClientConfiguration {

 @Bean

 @LoadBalanced // Ribbon

 def restTemplate(scalaObjectMapper : ScalaObjectMapper) : RestTemplate = {

 val restTemplate = new RestTemplate()

 restTemplate.getMessageConverters foreach {

 case mc: MappingJackson2HttpMessageConverter =>

 mc.setObjectMapper(scalaObjectMapper)

 case _ =>

 }

 restTemplate

 }

196

Client-side Service Discovery - Example

Advantages:

● Fewer moving parts and network hops compared to Server-side Discovery

Drawbacks:

● This pattern couples the client to the Service Registry

● Developers need to implement client-side service discovery logic for each
programming language/framework used by the application, e.g Java/Scala,
JavaScript/NodeJS.

○ Netflix Prana provides an HTTP proxy-based approach to service discovery for non-JVM
clients. 197

Microservices Patterns

198

Server-side Service Discovery

199

Server-side Service Discovery - Examples

AWS Elastic Load Balancer (ELB)

Clustering solutions such as Kubernetes and Marathon

200

Server-side Service Discovery

Advantages:
● Client code simpler than with client-side discovery
● Some cloud environments provide this functionality, e.g. AWS Elastic Load

Balancer
Drawbacks:
● Unless it’s part of the cloud environment, the router is another system

component that must be installed and configured (and replicated for
availability and capacity)

● The router must support the necessary communication protocols (e.g HTTP,
gRPC, Thrift, etc)

● More network hops are required than when using Client Side Discovery
201

Microservices Patterns

202

Service registry

Problem: How do clients of a service (Client-side discovery) and/or routers
(Server-side discovery) know about the available instances of a service?

● Exposes a remote API (HTTP/REST, Thrift ...) at a particular location (host
and port)

● Dynamic changes of number of services instances and their locations

203

Service registry

Solution:

A database of services instances, their instances and their locations

● register on startup
● deregistered on shutdown
● invoke a service instance’s health check API

204

Service registry - Examples

Examples

● Netflix Eureka, JHipster Registry
○ commonly used services: Apache Zookeeper, Consul, Etcd

● Implicit service registry
○ Kubernetes, Marathon, AWS ELB ...

205

Service registry

Advantages

● Client of the service and/or routers can discover the location of service
instances

Drawbacks

● Yet another infrastructure component that must be setup, configured and
managed.

○ The service registry is a critical system component!

206

Service registry

Two options to register service instances:

● Self registration pattern

● 3rd party registration pattern

Additional remarks:

● Service registry instances must be deployed on fixed and well known IP
addresses.

● Clients are configured with those IP addresses.
207

Microservices Patterns

208

Self-Registration pattern

Problem: How are service instances registered with and unregistered from the
service registry?

● Service instances must be registered with the service registry on startup and
unregistered on shutdown

● Service instances that crash must be unregistered from the service registry

● Service instances that are running but incapable of handling requests must be
unregistered from the service registry

209

Self-Registration pattern

Solution:

● A service instance is responsible for registering itself with the service registry
○ On startup the service instance registers itself (host and IP address) with the service registry
○ The client must periodically renew its registration so that the registry knows it is still alive
○ On shutdown, the service instance unregisters itself from the service registry

210

Self-Registration pattern

Advantages

● A service instance knows its own state and can refined state model:
“STARTING, AVAILABLE, …” rather than “UP/DOWN”

Drawbacks

● Couples the service to the Service Registry
○ Developers must implement service registration logic in each programming

language/framework that they use to write your services, e.g. NodeJS/JavaScript, Java/Scala,
etc.

○ A service instance that is running yet unable to handle requests will often lack the self-
awareness to unregister itself from the service registry

211

Microservices Patterns

212

3rd Party Registration pattern

Solution:
● A 3rd party registrar is responsible for registering and unregistering a service

instance with the service registry
● When the service instance starts up, the registrar registers the service

instance with the service registry
● When the service instance shuts downs, the registrar unregisters the service

instance from the service registry

Examples:
● Netflix Prana, AWS Autoscaling Groups, Joyent’s Container buddy,

Registrator, Clustering frameworks such as Kubernetes and Marathon
213

3rd Party Registration pattern

Advantages

● The service code is less complex than when using the Self Registration
pattern since its not responsible for registering itself

● The registrar can perform health checks on a service instance and
register/unregister the instance based the health check

Drawbacks

● Superficial knowledge of the state of the service instance e.g. RUNNING or
NOT RUNNING

● Another critical component that must be installed, configured and maintained
214

Microservices Patterns

215

External API

Example of an online store selling books:
● Need to develop multiple versions of the product details user interface:

○ HTML5/JavaScript-based UI for desktop and mobile browsers
○ Native Android and iPhone clients
○ Expose product details via a REST API for use by 3rd party applications

● A product details UI can display a lot of information about a product.
● Basic information about the book such as title, author, price, etc.
● Your purchase history for the book
● Availability
● Buying options
● Customer reviews
● …

216

External API

The online store uses the Microservice architecture pattern → the product details
data is spread over multiple services:
● Product Info Service
● Pricing Service
● Order service
● Inventory service
● Review service

Consequently, the code that displays the product details needs to fetch information
from all of these services.

217

External API

Problem: How do the clients of a Microservices-based application access the
individual services?
● The granularity of APIs provided by microservices is often different than what

a client needs
● Different clients need different data
● Network performance is different for different types of clients
● The number of service instances and their locations (host+port) changes

dynamically
● Partitioning into services can change over time and should be hidden from

clients
● Services might use a diverse set of protocols, some of which might not be

web friendly 218

Microservices Patterns

219

API Gateway

220

API Gateway

Advantages:
● Insulates the clients:

○ from how the application is partitioned into microservices
○ from the problem of determining the locations of service instances

● Provides the optimal API for each client
● Reduces the number of requests/roundtrips
● Simplifies the client by moving logic for calling multiple services from the client

to API gateway
● Translates from a “standard” public web-friendly API protocol to whatever

protocols are used internally

221

API Gateway

Drawbacks:
● Increased complexity
● Increased response time

Issues:
● How implement the API gateway?

○ An event-driven/reactive approach

222

Microservices Patterns

223

Backend for front-end

224

Backend for front-end

Fig from https://blog.bitsrc.io/bff-pattern-backend-for-frontend-an-introduction-e4fa965128bf

225

https://blog.bitsrc.io/bff-pattern-backend-for-frontend-an-introduction-e4fa965128bf

Backend for front-end

Advantages

Separation of concerns — Frontend requirements will be separated from the backend concerns. This is easier for maintenance.

● Easier to maintain and modify APIs — The client application will know less about your APIs’ structure, which will make it
more resilient to changes in those APIs.

● Better error handling in the frontend — Server errors are meaningless to the frontend user most of the time. Instead of
directly returning the error server sends, the BFF can map out errors that need to be shown to the user. This will improve the
user experience.

● Multiple device types can call the backend in parallel — While the browser is making a request to the browser BFF, the
mobile devices can do the same. It will help obtain responses from the services faster.

● Better security — Certain sensitive information can be hidden, and unnecessary data to the frontend can be omitted when
sending back a response to the frontend. The abstraction will make it harder for attackers to target the application.

● Shared team ownership of components — Different parts of the application can be handled by different teams very easily.
Frontend teams get to enjoy ownership of both their client application and its underlying resource consumption layer; leading to
high development velocities. The below diagram shows an example of such a team separation along with BFFs.

Pitfalls

. In order to avoid these, we have to follow some best practices. Some best practices to follow are stated below.

● Avoid implementing a BFF with self-contained all-inclusive APIs — Your self-contained APIs should be in the
microservices layer. Most developers forget this and start implementing service-level APIs in the BFF as well. You should keep
in mind that the BFF is a translation later between the client and the services. When data is returned from a service API, the
purpose of it is to transform it into the data type specified by the client application.

● Avoid BFF logic duplication —A vital point to note is that a single BFF should cater to a specific user experience, not a
device type. For example, most of the time, all mobile devices (iOS, Android, etc.) share the same user experience. In that
case, one BFF for all these operating systems is sufficient. There is no need to have a separate BFF for iOS and another for
Android.

● Avoid over-relying on BFFs — A BFF is merely a translation layer. Yes, it provides a certain level of security to the application
too. But, you should not rely on it more than you should. Your API layer and frontend layer should take care of all the
functionality and security aspects regardless of the presence of a BFF or not. Because the BFF is supposed to fill a gap, not
add any functionality or service to the application.

226

Microservices Patterns

227

Service deployment

Problem: How are services packaged and deployed?
● Variety of languages, frameworks, and framework versions
● Multiple service instances for throughput and availability
● Services must be independently deployable and scalable
● Service instances need to be isolated from one another
● Building and deploying a service should be fast
● Developers should be able to constrain the resources (CPU and memory) consumed by

a service
● Developers need to monitor the behavior of each service instance
● Deployment needs to be reliable and efficient

228

Microservices Patterns

229

Service deployment platform

Solution: Use a deployment platform
● Automated infrastructure for application deployment.
● Provides a service abstraction (set of highly available (e.g. load balanced)

service instances)
Examples:
● IaaS (Amazon EC2, Google Cloud, Azure, Digital Ocean, private Openstack IaaS …)
● Container orchestrators (Kubernetes, KIND, Docker swarm, Rancher …)
● Serverless platforms (AWS Lambda, Azure Functions, Google Cloud Functions, OpenWhisk …)
● PaaS (Heroku, Cloud Foundry, AWS Elastic Beanstalk, …)

230

Microservices Patterns

231

Multiple service instances per host

Solution: Run multiple instances of different services on a host (Physical or Virtual
machine).

Ways for deploying a service instance on a shared host

● Deploy each service instance as a JVM process

○ Tomcat or Jetty instances per service instance.

● Deploy multiple service instances in the same JVM.

○ Web applications or OSGI bundles.

232

Multiple service instances per host

Advantages:

●More efficient resource utilization than the Service Instance per host pattern

Drawbacks:

●Risk of conflicting resource requirements
●Risk of conflicting dependency versions
●Difficult to limit the resources consumed by a service instance
●When multiple services are deployed in the same process

■ Difficult to monitor resource consumption of individual services
■ Difficult to isolate services

233

Microservices Patterns

234

Single service instance per host

Solution: Deploy each single service instance on its own host

Advantages:
● Services instances are isolated from one another
● No conflicting resource requirements or dependency versions
● A service instance can only consume at most the resources of a single host
● Straightforward to monitor, manage, and redeploy each service instance

Drawbacks:
● Less efficient resource utilization compared to Multiple Services per Host

(because there are more hosts)
235

Microservices Patterns

236

Serverless deployment

Solution:

● Use a deployment infrastructure that hides any concept of servers
● The infrastructure takes your service’s code and runs it
● You are charged for each request based on the resources consumed

To deploy a service using this approach:

● Package the code (e.g. as a ZIP file)
● Upload it to the deployment infrastructure
● Describe the desired performance characteristics

237

Serverless deployment - Examples

Examples

● AWS Lambda, Google Cloud Functions, Azure Functions

● OpenWhisk

238

Serverless deployment

Advantages:
● Eliminates the need to spend time on managing low-level infrastructure.
● Focus on the functional code.
● Extremely elastic
● Pay for request

Drawbacks:
● Supports a few languages.
● Only suitable for stateless applications
● Cannot deploy a long running stateful application (database or broker).
● Limited “input sources”
● Functions must startup quickly

239

Microservices Patterns

240

Service instance per container

Solution: Package the service as a container image and deploy each service
instance as a container

Examples:

● Kubernetes

● Marathon/Mesos

● Amazon EC2 Container Service

Note: The most popular container technology is Docker 241

Service instance per container

Advantages:
● Scale up and down a service by changing the number of container instances.
● Encapsulates the details of the technology used to build the service.
● Limits on the CPU and memory consumed by a service instance
● Extremely fast to build.
● Extremely fast to start.

Drawbacks:
● Security issues
● The infrastructure for deploying containers is not as rich as the infrastructure

for deploying virtual machines.

242

Microservices Patterns

243

Service Instance per VM

Solution: Package the service as a virtual machine image and deploy each service
instance as a separate VM

● Example: Netflix packages each service as an EC2 AMI and deploys each
service instance as a EC2 instance.

244

Service Instance per VM

Advantages

● Straightforward to scale the service by increasing the number of instances

● The VM encapsulates the details of the technology used to build the service

● Each service instance is isolated

● A VM imposes limits on the CPU and memory consumed by a service
instance

● IaaS solutions such as AWS provide a mature and feature rich infrastructure
for deploying and managing virtual machines

○ Elastic Load Balancer

○ Autoscaling groups

○ …

Drawbacks

● Building a VM image is slow and time consuming

245

Microservices Patterns

246

Hydrid deployment

Service-per-container or Service-per-VM

for normal traffic (par per hour)

Serverless microservice

when request peak (fast startup/elasticity and pay per request)

Drawbacks: 2 implementations of the same MS

247

Deployment

Service mesh

● dedicated infrastructure layer for handling service-to-service communication
and global cross-cutting of concerns to make these communications more
reliable, secure, observable and manageable.

● Examples: Istio, Linkerd, Maesh ...

Sidecar

● Communication proxy between microservices in the mesh

○ routing according load, version, mode (prod, dev), A/B testing, …

● Examples: Envoy, Spring Boot Sidecar 248

Service Mesh

249

Service Mesh

250

Service Mesh - Sidecar pattern

251

252

Service Mesh

253

Service Mesh - Example Istio

254

Service Mesh - Example Maesh

Kubernetes

Traefik

255

Case studies

Netflix

Devoxx

259

Case Study : Netflix

Leader in subscription internet TV service

created in 1997

158 paid million members

~190 countries, 10s of languages

1000s of device types

Microservices hosted on AWS

Open-source for Microservices platforms

Josh Evans – Engineering Leader

260

Case Study : Netflix

261

Case Study : Netflix

262

Case Study : Netflix

263

Case Study : Netflix

264

Case Study : Netflix

265

Case Study : Netflix

Performance Debugging

266

Extra : Netflix Backend

https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3

267

https://dev.to/gbengelebs/netflix-system-design-backend-architecture-10i3

Case Study : Devoxx

Annual Java, Android and HTML5 community conference

started in 2001 by the Belgium JUG

Biggest vendor-independent Java conference in the world

Devoxx Belgium 2017 : 3400 attendees from 40 different countries

Several regional and national Devoxx + Devoxx Kids

Need for a conference management system

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
268

Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
269

Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
270

Case Study : Devoxx

https://fr.slideshare.net/agoncal/custom-and-generated-code-side-by-side-with-jhipster
271

Microservices Benchmarks

TrainTicket

TeaStore

DeathStarBench

● Research paper: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
● Code available from: https://github.com/delimitrou/DeathStarBench/

283

http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://github.com/delimitrou/DeathStarBench/

Microservices and FinOps

Distributed tracing for FinOps and compliance
https://horovits.medium.com/observability-into-your-finops-taking-distributed-tracin
g-beyond-monitoring-48a51e32e78a

284

https://horovits.medium.com/observability-into-your-finops-taking-distributed-tracing-beyond-monitoring-48a51e32e78a
https://horovits.medium.com/observability-into-your-finops-taking-distributed-tracing-beyond-monitoring-48a51e32e78a

Resources

Books about Microservices

286

More books about Microservices

287

	Diapo 1
	Agenda
	IT Architecture Trends
	App “Desagregation” Evolution
	App “Desagregation” Evolution
	Diapo 10
	Exercice: The cost of the software
	The software lifecycle of an artifact/API
	The software lifecycle of an artifact/API
	What are microservices?
	What are microservices?
	Monolithic vs Microservice Architecture
	Monolithic vs Microservice Architecture - Requirements
	Monolithic architecture
	Monolithic architecture - Drawbacks
	Microservice architecture
	The Scale Cube
	Microservice architecture: benefits
	Microservice architecture: drawbacks
	When to use the microservice architecture?
	Choosing a monolithic architecture
	Choosing a microservice architecture
	Diapo 28
	Diapo 29
	Microservices Patterns Application Patterns
	Microservices Patterns Application Infrastructure Patterns
	Microservices Patterns Infrastructure Patterns
	Microservices Patterns Decomposition
	How to decompose the application into services?
	How to decompose the application into services?
	Microservices Patterns Decomposition
	Decompose by business capability
	Decompose by business capability
	Decompose by business capability
	Decompose by business capability
	Decompose by business capability
	Decompose by business capability
	Microservices Patterns Decomposition
	Decompose by subdomain
	Decompose by subdomain
	Single responsibility pattern
	Single responsibility pattern
	Single responsibility pattern
	Single responsibility pattern
	Microservices Patterns Data patterns
	How to maintain data consistency?
	Microservices Patterns Database architecture
	Database architecture
	Database architecture
	Reminder: Transaction processing
	Reminder: Transaction processing The X/Open DTP Model
	Long-running transactions
	Long-running transactions : The travel agency
	Microservice Patterns Database architecture
	Shared Database
	Shared Databases
	Decomposition Patterns Database architecture
	Database per Service
	Database per Service
	Database per Service
	Database per Service
	Microservices Patterns Data consistency
	Maintaining consistency
	The Two-Phase Commit Protocol
	The Two-Phase Commit Protocol : without failure
	The Two-Phase Commit Protocol : with failure
	The Two-Phase Commit Protocol : with failure
	Microservices Patterns Data consistency
	Saga Transactions
	Saga Transactions
	Saga Transactions : without failure
	Saga Transactions Coordination
	Choregraphy-based Saga
	Orchestration-based Saga
	Example : Choregraphy-based Saga @ Zenaton
	Saga Transactions
	Saga vs BWTP BWTP transaction completion
	Saga vs BWTP BWTP compensation cascade
	Microservices Patterns Data consistency
	Aggregate
	Microservices Patterns Data consistency
	Domain event
	Microservices Patterns Data consistency
	Event sourcing
	Event sourcing
	Event sourcing - Example
	Event sourcing
	Microservices Patterns Querying
	Querying patterns
	Microservices Patterns Querying
	API Composition
	API Composition
	API Composition : Example
	Microservices Patterns Querying
	Command Query Responsibility Segregation (CQRS)
	Non-CQRS versus CQRS
	Command Query Responsibility Segregation (CQRS)
	Microservices Patterns Testing
	Service Component Test
	Service Component Test
	Microservices Patterns Testing
	Consumer-side contract test
	Microservices Patterns Testing
	Consumer-driven contract test
	Consumer-driven contract test
	Microservices Patterns UI (User Interface)
	UI patterns
	Microservices Patterns UI (User Interface)
	Server-side page fragment composition
	Microservices Patterns UI (User Interface)
	Client-side UI composition
	Microservices Patterns
	Microservices Patterns Communication patterns
	Microservices Patterns Communication style
	Inter-service communications patterns
	Microservices Patterns Communication style
	Remote Procedure Invocation (RPI)
	Remote Procedure Invocation (RPI)
	Microservices Patterns Communication style
	Messaging
	Messaging
	Microservices Patterns Communication style
	Domain-specific protocols
	Microservices Patterns
	Microservices Patterns Transactional Messaging
	Transaction outbox pattern
	Transactional Outbox Pattern
	Transaction outbox pattern
	Microservices Patterns Transactional Messaging
	Transaction log tailing
	Transaction log tailing
	Microservices Patterns Transactional Messaging
	Polling publisher
	Microservices Patterns Reliability
	Circuit Breaker
	Circuit breaker
	Circuit Breaker
	Circuit Breaker
	Circuit Breaker
	Circuit Breaker
	Microservices Patterns Observability
	Exception tracking
	Exception tracking
	Microservices Patterns Observability
	Log aggregation
	Log aggregation
	Microservices Patterns Observability
	Distributed tracing
	Distributed tracing
	Distributed tracing
	Distributed tracing
	Diapo 161
	Microservices Patterns Observability
	Health Check API
	Health Check API
	Health Check API
	Microservices Patterns
	Log deployments and changes
	Log deployments and changes
	Log deployments and changes
	Microservices Patterns
	Audit Logging
	Audit Logging
	Microservices Patterns
	Application Metrics
	Application Metrics
	Application metrics
	Microservices Patterns
	Microservice Chassis
	Microservice Chassis
	Microservice Chassis
	Microservices Patterns
	Externalized Configuration
	Externalized Configuration
	Externalized Configuration
	Externalized Configuration
	Microservices Patterns
	Access Token
	Access Token
	Microservices Patterns
	Microservices Patterns
	Service Discovery
	Service Discovery
	Microservices Patterns
	Client-side Service Discovery
	Client-side Service Discovery - Example
	Client-side Service Discovery - Example
	Client-side Service Discovery - Example
	Microservices Patterns
	Server-side Service Discovery
	Server-side Service Discovery - Examples
	Server-side Service Discovery
	Microservices Patterns
	Service registry
	Service registry
	Service registry - Examples
	Service registry
	Service registry
	Microservices Patterns
	Self-Registration pattern
	Self-Registration pattern
	Self-Registration pattern
	Microservices Patterns
	3rd Party Registration pattern
	3rd Party Registration pattern
	Microservices Patterns
	External API
	External API
	External API
	Microservices Patterns
	API Gateway
	API Gateway
	API Gateway
	Microservices Patterns
	Backend for front-end
	Backend for front-end
	Backend for front-end
	Microservices Patterns
	Service deployment
	Microservices Patterns
	Service deployment platform
	Microservices Patterns
	Multiple service instances per host
	Multiple service instances per host
	Microservices Patterns
	Single service instance per host
	Microservices Patterns
	Serverless deployment
	Serverless deployment - Examples
	Serverless deployment
	Microservices Patterns
	Service instance per container
	Service instance per container
	Microservices Patterns
	Service Instance per VM
	Service Instance per VM
	Microservices Patterns
	Hydrid deployment
	Deployment
	Service Mesh
	Service Mesh
	Service Mesh - Sidecar pattern
	Diapo 252
	Service Mesh
	Service Mesh - Example Istio
	Service Mesh - Example Maesh
	Case studies
	Case Study : Netflix
	Case Study : Netflix
	Case Study : Netflix
	Case Study : Netflix
	Case Study : Netflix
	Case Study : Netflix
	Case Study : Netflix
	Extra : Netflix Backend
	Case Study : Devoxx
	Case Study : Devoxx
	Case Study : Devoxx
	Case Study : Devoxx
	Microservices Benchmarks
	Microservices and FinOps
	Diapo 285
	Books about Microservices
	More books about Microservices

