
Cloud Computing
Cloud native applications – Architecture and Orchestration

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2024

1

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

• These slides are mostly adapted from the slides of Renaud
Lachaize

2

R. Lachaize, T. Ropars 2

Main references (1/2)
● B. Scholl, T. Swanson, P. Jausovec. Cloud native: Using containers, functions, and data to build

next-generation applications. O’Reilly, 2019.

● J. Garrisson, K. Nova. Cloud-native infrastructure: Patterns for Scalable Infrastructure and
Applications in a Dynamic Environment. O’Reilly, 2017.

● B. Burns, J. Beda, K. Hightower, L. Evenson. Kubernetes up & running (3rd edition). O’Reilly, 2022.
§ Freely available from VMware (registration required): https://k8s.vmware.com/kubernetes-up-and-running/

● B. Burns. Designing distributed systems. Patterns and paradigms for scalable, reliable services.
O’Reilly, 2018.
§ Freely available from Microsoft (registration required): https://azure.microsoft.com/en-us/resources/designing-

distributed-systems/

R. Lachaize, T. Ropars 3

Main references (2/2)

● Kubernetes documentation: https://kubernetes.io/docs/home/

● Cloud Native Computing Foundation (CNCF) Web site: https://www.cncf.io

● Jordan Webb. The Container orchestrator landscape. LWN.net. August 2022.
https://lwn.net/Articles/905164/

● How Kubernetes reinvented virtual machines. Ivan Velichko. August 2022.
https://iximiuz.com/en/posts/kubernetes-vs-virtual-machines/

R. Lachaize, T. Ropars 4

Outline
● Origins and main characteristics

● Microservices

● Container orchestration

● Design patterns

Definition

By J. Lewis and M. Fowler
The microservice architectural style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API.

These services are built around business capabilities and independently deployable by
fully automated deployment machinery.

There is a bare minimum of centralized management of these services, which may be
written in di�erent programming languages and use di�erent data storage
technologies.

4

The key concepts

Architectural style

Suite of small services

Built around business capabilities

Independently deployable

Communicating with lightweight mechanisms

Written in di�erent programming languages

Use di�erent data storage technologies

5

Example of a media application

See: Gan, Yu, et al. "An open-source benchmark suite for microservices and their hardware-software implications for cloud &
edge systems.", ASPLOS 2019.

7

The key concept of microservices

Independent deployability

Owning their own state

Alignment with organization + structured based on business domains

Size

12

Advantages of microservice architectures

Technology heterogeneity

Robustness

Scaling

Ease of Deployment

23

R. Lachaize, T. Ropars 10

Microservices – Challenges
● Complexity (e.g., due to increased distribution)

● API versioning and integration

● Data integrity and consistency
● Monitoring and logging

● Service discovery and routing

● Availability

● Performance issues (e.g., increased average and tail latencies)

● Achieving insightful and efficient end-to-end observability (distributed, large-
scale debugging and profiling

R. Lachaize, T. Ropars 33

Outline
● Origins and main characteristics

● Microservices

● Container orchestration

● Design patterns

We need to say a few words about Virtual Machines and Containers

3

R. Lachaize, T. Ropars 4

Infrastructure building blocks
for general-purpose computing tasks

● Goals: Deploying, running, managing:
§ … arbitrary tasks
§ … made of arbitrary code
§ … in a flexible, convenient, secure, and efficient way (on a cloud platform).

● Such an infrastructure relies on two major software building blocks:
§ Virtual machines
§ Containers

● Vocabulary: the above tasks are called “guest code” and are managed by the
“host” environment.

R. Lachaize, T. Ropars 5

Virtual machines (1/6)
● A (system-level) virtual machine is an efficient & isolated duplicate of a real

(physical) machine

● Often abbreviated as “VMs” or “Guest VMs” or “Guests”

● Machine resources include CPU(s), main memory (RAM), I/O devices (disks,
NICs, peripherals …)

● Goals:
§ “Duplicate”: code running in a VM cannot distinguish between real or virtual

hardware
§ “Isolated”: Several VMs execute concurrently on the same machine without

interfering with each other (at least w.r.t. safety and security considerations)
§ “Efficient”: VMs should execute at a speed close to that of real hardware

R. Lachaize, T. Ropars 6

Virtual machines (2/6)
The resources exported by a virtual machine may or may not correspond to the
ones of the underlying physical hardware.

Typically, in practice, on a Cloud server:

● Regarding the functional interface:
§ The VM exports the same CPU model as the one of the physical machine (same ISA:

Instruction Set Architecture).
§ The VM may or may not export the same types of I/O devices as the one of the

physical machine.

● Regarding the amount of available resources:
§ A VM typically exports fewer resources than the total of physical resources.
§ Two main reasons:

● Concurrent execution of multiple VMs (with decent performance)
● Virtualization overhead

Virtual machines (4/6)
Where is the hypervisor in the software stack?

● There are several possibilities.

● On server systems, for performance reasons,
the hypervisor is typically the lowest software
layer (which directly controls the hardware).

In any case:

● Each guest VM has it own (guest) OS instance.

● Different VMs may have similar or different
guest OSes.

● The expression “host software” corresponds to
the layer(s) below the guests.

R. Lachaize, T. Ropars 8

Hypervisor

Physical HW

(Host) OS

Physical HW

Guest
OS

Pro-
cess

Guest VM

Guest
OS

Pro-
cess

Guest VM

Hypervisor

Process Process Guest
OS

Pro-
cess

Guest VM

Guest
OS

Pro-
cess

Guest VM

Process Process

R. Lachaize, T. Ropars 18

Containers (1/5)

● Unlike (system-level) virtual machines, containers support virtualization at
the level of the OS interface (rather than at the hardware interface).

● Hence, they are also known as “OS-level containers” or “OS-level
virtualization”.

● Roughly speaking, a container is akin to a “process group” in a traditional OS
… yet with more isolation guarantees regarding security, performance and
software configuration.

● Different containers running on the same machine share the same underlying
host kernel. There are no guest kernels.

Containers (2/5)

R. Lachaize, T. Ropars 19

Physical hardware

Hypervisor

Guest
OS kernel

Guest
libraries

Process
ProcessProcess

Guest VM

Physical hardware

Guest OS kernel

Guest
libraries

Process
ProcessProcess

Container

Virtualization
boundary:

virtual hardware
(CPU ISA + devices)

Virtualization boundary:
OS (syscall) interface

R. Lachaize, T. Ropars 21

Containers (4/5)
The containers ecosystem also includes tools and facilities to simplify the
management of container images (i.e., the files to be included in the file system
within a container).

● Application packaging
§ Management of executables, libraries, and configuration files
§ Management of version numbers and dependencies
§ Layered file system, allowing to define new images based on existing ones, in a

simple and space-efficient way

● Distribution and sharing of images
§ Repository (“hub”) of existing images
§ Facilitated by the fact that most container images are lightweight (and layered)

R. Lachaize, T. Ropars 23

Containers (5/5)
In practice, the management of containers is addressed via a set of software tools, which
encompass different needs:
● Building container images, managing images, sharing and downloading images

● Managing container instances, running containers

There exists several tools with roughly similar features, like Docker and Podman.
The above-mentioned tools are themselves based on several modular building blocks,
among which:

● “Low-level runtimes” focused on the machinery for running containers. Example: runc
(used by Docker).

● “High-level runtimes” focused on support for download/managing container images and
running a container from an image. Example: containerd (used by Docker).

R. Lachaize, T. Ropars 26

Virtual machines and Containers (1/3)
Virtual machines and containers share a set of common design goals:

● Deployment:
§ Notion of “virtual appliance”: Encapsulating code (applications, libraries, …) & configuration

information to make software components more portable across machines and hosting
environments.

● Security isolation (a.k.a. “sandboxing”):
§ Preventing “guest” code from performing unauthorized actions and accessing unauthorized data
§ In particular, preventing unwanted interactions with:

● The (code and data of the) host and the other guests
● The hardware resources of the machine (including the I/O devices)

● Performance isolation:
§ Precisely controlling the amount of low-level resources granted to each guest.

● Avoiding/mitigating interferences between guests
● Avoiding resource exhaustion/saturation (denial of service)
● Possibly differentiating QoS between guests

R. Lachaize, T. Ropars 27

Virtual machines and Containers (2/3)
However, virtual machines and containers also have significantly different
characteristics regarding some aspects:
● Dependencies for portability: Hardware interface vs. OS interface (ABI)

● Memory and disk footprint: Containers are more lightweight.

● Startup and shutdown latency: Containers are faster.

● I/O performance: Depending on the chosen setups, VMs and/or containers may have non-negligible
overheads for network- or disk-sensitive workloads. (There is no clear performance hierarchy between
the two).

● Syscall performance: Same remark as above for syscall-intensive workloads.

● Security: VMs are arguably more secure. However, VM and container technologies both have a large
attack surface.

● Live migration (across physical hosts): VMs have more mature/robust support.

● Support for stateful (vs. stateless) workloads: VMs have more mature/robust support.

R. Lachaize, T. Ropars 28

Virtual machines and Containers (3/3)
These two technologies are not necessarily antagonist and mutually
exclusive.
● In public clouds, containers are often/typically deployed within virtual machines.

● Modern “container orchestration” systems are agnostic regarding the actual container
implementation and can use VMs as a replacement.
§ For example, in the Kubernetes orchestrator, the CRI (container runtime interface) specification is

also compatible with virtual machines.

● Many recent facilities integrated in host operating systems can be leveraged by both
technologies.
§ For example, on Linux, the seccomp and eBPF subsystem available for secure and efficient

sandboxing & monitoring of guest code.

R. Lachaize, T. Ropars 34

Container orchestration (1/2)

● Vocabulary warning: Not to be confused with the expression “service
orchestration”, which is often used with a somewhat different meaning.

● A container orchestrator is:
§ a software system

§ … in charge of simplifying (through automation) the management of a
fleet of container-based applications

§ … on a cluster of (virtual or physical) machines.

R. Lachaize, T. Ropars 35

Container orchestration (2/2)
The main duties of a container orchestrator include:

● The provisioning and deployment of containers

● The setup of the network configuration of the containers

● The placement decisions for the containers on the cluster nodes

● Health monitoring (for containers and nodes) and appropriate reactions when needed

● Load balancing between containers

● Autoscaling decisions (mostly for horizontal scaling but also possibly for vertical scaling)

R. Lachaize, T. Ropars 36

Container orchestration – Case study: Kubernetes

● Kubernetes: currently the most popular container orchestrator
● Also known under the abbreviation “k8s”

● A project initially developed by Google and influenced by the design of previous (closed,
internal) cluster/container management systems used within the company.

● Released as open source in 2014. Now managed by the Cloud Native Computing
Foundation (CNCF).

● Implemented in the Go language.

● A good/short introductory reference (for the description of the design principles):
§ B. Burns et al. Borg, Omega and Kubernetes: Lessons learned from three container-management

systems over a decade. ACM Queue. January-February 2016.
https://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/44843.pdf

R. Lachaize, T. Ropars 37

Kubernetes components
● Kubernetes is a distributed system based on 3 main categories of components.

§ Master components: Provide the “control plane” of the cluster.
● Make global (cluster-wide) decisions. E.g., regarding the scheduling/placement of tasks, the

number of replicas for a given service, the response to specific events like failures.
● Are typically deployed on dedicated nodes for better robustness.

§ Node components: Provide the “data plane” of the system. Act as local agents on
the cluster resources :

● For health and performance monitoring
● For handling the orders issued by the control plane (e.g., running a new container)
● For setting up the network connectivity of the containers

§ Addons: Provide additional services, such as:
● DNS services
● High-level user interfaces (e.g., management/monitoring dashboards)

R. Lachaize, T. Ropars 38

Kubernetes components overview

Master node

Etcd

kube-API-server

kube-scheduler

kube-controller-
manager

Worker node

kubelet

Container

Pod

kube-proxy

OS network
services

(e.g., IPtables)

Network
interface

Container
runtime

(e.g., containerd)

Container runtime interface
(CRI)

R. Lachaize, T. Ropars 39

Kubernetes components – Details (1/5)
● Master components

§ Kube-apiserver: the front end for the Kubernetes control plane
● Exposes the API of the control plane
● Designed for horizontal scaling (load balancing)

§ Etcd: a strongly consistent and highly available key-value database
● Used to store all the cluster configuration/metadata

§ Kube-scheduler: monitors the creation of new “Pods” and selects nodes for them
● Placement decisions for Pods are based on various factors, including: individual and collective

resource requirements, hardware/software/policy constraints, affinity and anti-affinity
specifications, data locality …

R. Lachaize, T. Ropars 40

Kubernetes components – Details (2/5)
● Master components (continued)

§ Kube-controller-manager: runs (most of) the Kubernetes controllers
● Logically, each controller is a distinct process
● However, to reduce complexity, all controllers are compiled into a single binary and run in a

single OS process
● Some controllers can also run externally

§ Cloud-controller-manager: runs controllers that interact with the underlying cloud
provider

● Allows the cloud provider’s code and the Kubernetes code to evolve independently of each
other

R. Lachaize, T. Ropars 41

Kubernetes components – Details (3/5)
Remarks:

● Master components are replicated on multiple master nodes for failover and
high availability.

● “Managed Kubernetes” offerings typically offload the burden of
hosting/administrating these master components from the end-users (cloud
tenants).
§ Examples : Google Kubernetes Engine (GKE), Azure Kubernetes Service (AKS),

AWS EKS.

R. Lachaize, T. Ropars 42

Kubernetes components – Details (4/5)
● Node components: Run on every compute (worker) node of the cluster

§ Kubelet: local agent in charge of running containers in “Pods”
● Reads and applies the Pods specifications
● Checks the health of the containers
● Does not manage the containers that were not created by Kubernetes

§ Kube-proxy: local network proxy
● Maintains the network configuration/rules on the cluster nodes (regarding communication with

other cluster nodes and external nodes), in order to support the Kubernetes “service” concept.
● Typically relies on the local OS services (e.g., packet filtering) to implement traffic forwarding.

§ Container runtime: in charge of executing containers
● The Kubernetes CRI (Container Runtime Interface) provides an abstract interface that allows

plugging various runtime implementations (e.g., Docker, containerd, cri-o, …)

R. Lachaize, T. Ropars 43

Kubernetes components – Details (5/5)
● Add-ons: Some examples

§ DNS: Serves DNS records for Kubernetes services
● Containers started by Kubernetes automatically include this DNS server for their DND lookups

§ Web UI (Dashboard)
● General-purpose Web-based user interface for Kubernetes clusters
● Allows managing and troubleshooting the Kubernetes cluster, and applications running on the cluster

§ Container resource monitoring
● Records generic time-series of metrics about containers in a centralized database
● Provides a user interface to browse the collected data

§ Cluster-level logging
● In charge of collecting and saving container logs to a central store with a search/browse interface.

R. Lachaize, T. Ropars 44

Kubernetes – Main concepts (1/4)
● Pods:

§ A pod is an abstraction encapsulating a set of containerized components.
§ A pod is the basic scheduling unit for Kubernetes.
§ There are two main setups in practice:

● Pod with a single container
● Pod with multiple containers that work together

§ All the containers within a pod are guaranteed to be deployed on the same machine and
can share resources.

§ Each pod runs a single instance of an application (there is no replication/sharding within a pod).
§ Networking:

● Each pod is assigned a unique IP address.
● Containers within the same pod share the same network namespace (including network ports).

● Containers within the same pod can communicate using localhost.
§ Storage:

● A pod can specify a set of shared storage volumes, which can be accessed by all the containers within the
pod.

R. Lachaize, T. Ropars 45

Kubernetes – Main concepts (2/4)
● Service:

§ In Kubernetes, a “service” is an “endpoint” abstraction allowing to expose an application (running
as a set of pods) as a network service.

§ Useful to abstract the fact that the pod instances providing a given functionality can vary over time
(e.g., due to scaling or load balancing).

● Volume:
§ On-disk files in a container are ephemeral (they disappear upon termination of the container),

which can be limiting in certain setups/situations.
§ Volumes survive container crashes/restarts and support sharing between containers in a pod.
§ The lifetime of a volume corresponds to the lifetime of the enclosing pod.
§ Many types of backing storage systems are supported.

● Persistent volume:
§ Unlike a standard volume, a persistent volume can exist/survive independently from the pod(s)

that may consume it. The same persistent volume may be used successively by different pods.

R. Lachaize, T. Ropars 46

Kubernetes – Main concepts (3/4)

● Namespace:
§ Kubernetes allows using multiple virtual clusters on the same physical cluster.

§ Such a configuration is useful for environments in which there are many users spread
across multiple teams and projects.

§ The notion of “namespaces” is used to define such virtual clusters.
● Provides a scope for naming resources (a resource name must be unique within a given

namespace).
● Supports resource quotas to control the division of resources.

R. Lachaize, T. Ropars 47

Kubernetes – Main concepts (4/4)
● Controllers:

§ A concept inspired from other fields like robotics and automation/control theory.

§ A “control loop”:
● is an infinite loop whose purpose is to regulate the behavior of the system.
● continually monitors the current state of the system (here, a cluster) and acts accordingly in

order to reach a desired state (analogy: a thermostat).

§ Kubernetes uses many different controllers, each in charge of a specific aspect of
the cluster state.

● A set of built-in controllers (running inside the kube-controller-manager) supporting the
important core behaviors.

● Also possibly additional, user-defined controllers (that can run within Kubernetes, as a set of
pods, or outside).

R. Lachaize, T. Ropars 48

Kubernetes – Some examples of controllers (1/2)

● DaemonSet: ensures that all (or some) nodes of the cluster run a copy of a Pod.
§ For example, useful to run a storage daemon or a logging/monitoring daemon on every node.

● ReplicaSet: maintains a stable number of replica pods running at any given time.
§ Typically used to enforce a given replication factor in order to provide high availability guarantees.

● Deployment: provides declarative updates for Pods and ReplicaSets.
§ A ”deployment object” is used to describe a desired state.
§ Then the deployment controller changes the actual state at a controlled rate, in order to reach the

desired state.
§ Useful for many purposes: rolling out and monitoring ReplicaSets, scaling ReplicaSets, updating

Pods, rolling back to earlier deployment versions, …

R. Lachaize, T. Ropars 49

Kubernetes – Some examples of controllers (2/2)

● StatefulSet: manages applications that have one or more of the following
requirements:
§ Stable, unique network identifiers
§ Stable, persistent storage
§ Ordered, graceful deployment and scaling
§ Ordered, automated rolling updates

