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This lecture is about techniques based on replication to avoid service failures in the Cloud. More
specifically, it presents techniques that can be applied to deal with benign faults'.

1 Introduction

1.1 Fault model

To be able to reason about fault tolerance techniques, we need to define an abstract model that
captures the main characteristics of the faults we want be able to tackle.

In the following, we will assume benign faults. For processes, benign faults correspond to
crashes: a process either executes according to the specification, or stops executing. For channels,
benign faults correspond to the loss of messages.

Another model that could have been considered is Random faults (Byzantine). In this
model, a system provides random outputs to the same inputs. It covers the cases where different
users might observe different behaviors and the cases of malicious behaviors. Due to the complexity
of the solutions that deal with byzantine faults, we do not consider them hereafter.

1.2 Introduction to replication

The basic way of interacting between services/processes in Clouds and data centers is through a
client /server model. A client sends a request to another node and waits for an answer.

Replication is a technique that allows us to increase the availability of a system or service. With
replication, instead of having only one instance of a system/service, there are several copies. So, if
one copy crashes, the system /service will still be available, thanks to the other copies (Fig. 1).

Several approaches to replication exists. We can distinguish 3 main categories:

Data replication : With this approach, the client can only issue read and write operations on the
data. On the other hand, it allows a high degree of parallelism.

Passive replication : This approach is also called active/standby replication. A single leader
executes all requests and sends updates to the other replicas.

! Acknowledgments: Parts of these notes are strongly inspired by the lectures notes of Andre Schiper on Distributed
Algorithms.
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Figure 1: Replication (client-server model)

Active replication : This approach is also called active/active replication, or multi-leader repli-
cation. In this approach, all replicas can process requests.

Note that availability might not be the only concern when using replication. Replication may
also be used to improve performance:

e To reduce the latency by keeping data geographically close to the users
e To improve throughput by allowing parallel reads

These concerns should also be taken into account when choosing a replication technique.

2 Data replication (Quorum systems)

In a first step, we consider a simple problem where data need to be replicated. Only two operations
can be applied on a data item, read and write:

e write overwrites the previous value of the data item,
e read returns the most recent value written.

Defining the most recent value written might not be that trivial when the data is replicated on
multiple servers. Figure 2 illustrates a basic scenario. We need a consistency criteria to define what
is an acceptable result for a read operation.

2.1 Linearizability
The strongest consistency criteria for defining what is an acceptable result for a read request is

called linearizability.

Definition Let x be a data item, and denote the read operation of x by read(z), and the write
operation by write(x,val), where val is the value written. Consider an execution o consisting of
the concurrent execution of read and write operations by a set of processes. The execution o is
linearizable if there exists a sequential execution 7 in which:

(1) All read operations in 7 return the same value as in o
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Figure 2: A problematic scenario

and

(2a) The start and the end of each read or write operation op in 7 occur at the same time, denoted
by t°P, and

(2b) The time t° is in the interval [ts¥, t], where t3¥ is the time at which the operation op started
in o and t¥ is the time at which the operation op ended in o.

Example 1: Figure 3 shows an execution ¢ that is linearizable:

e Process p executes a write(x,0) operation that starts at time ¢; and ends at time 3.

e Process g executes a write(x, 1) operation that starts at time t3 and ends at time ¢5.

e Process p executes a read(x) operation that starts at time t4 and ends at time t7, returning
the value 0.

e Process ¢ executes a read(x) operation that starts at time tg and ends at time tg, returning
the value 1.

The bottom time-line in Figure 3 shows a sequential execution 7 that satisfies the three conditions
(1), (2a) and (2b) above (t, is in [t1,t3], tp is in [t4,t7], etc.). Thus o is linearizable.

Note that to define linearizability, we consider the operations for the client point of view. Figure 3
does not describe how clients p and ¢ interacts with the (replicated) server.

Example 2: Figure 4 shows an execution o that is not linearizable. The execution is not lineariz-
able, since in any sequential execution 7, the write(z, 1) operation of ¢ must precede the read(z)
operation of p. Thus in any sequential execution 7, the read(x) operation of p returns 1 (and not
0 as in o).

Informal definition of linearizability Informally, we can say that linearizability aims at making
the system appear as if there was a single copy of the data. To achieve this goal, we should enforce
the following behavior:
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Figure 4: A non linearizable execution

o If a read request terminates before the beginning of a write request, it must return the old
value.

e If a read request starts after the end of a write request, it must return the new value.

e If a read request is concurrent with a write request, it may return either the old or the new
value.

In addition to these three basic rules, we should introduce the following one:

e After a read request that returned the new value, all subsequent read requests, from the same
or from a different client, must return the new value.

This last rule describes the fact that in a linearizable system, a write operation should appear
to occur atomically at some point between the invocation of the write method and its termination.

The definition of linearizability assumes the existence of a global clock to be able to define if a
request occurred before/after another one, based on the physical time. Building such a clock may
be difficult in practice but it is not necessary to have one to build a linearizable system.

Linearizability in practice Linearizability is a very desirable property because it simplifies the
work of the application developers. Indeed, linearizability is a composable property. It means that
if an application uses two linearizable services, the resulting execution is still linearizable. It is not
the case for weaker consistency models (such as sequential consistency).



Unfortunately, insuring linearizability can be costly from performance point of view. Hence,
many services make the choice to implement a weaker consistency model. We will resume this
discussion later.

2.2 Non-replicated implementation of a linearizable data server

A non replicated server is easy to implement. The server consists of one process that manages the
data. Clients send requests and wait to receive a reply from the server (this is called synchronous
invocation). Requests are received and handled by the server process sequentially. A write(z, val)
request by client p leads the server to update x to val, and to send ok to p. A read(z) request by
client p leads the server to send val to p. This implementation trivially ensures linearizability.

2.3 Replicated implementation of a data server

In this section, we are going to present a replication technique that is sometimes called leaderless
replication. In such an approach, a client directly contacts one/several replicas to execute read or
write operations. This name is given by opposition to leader-based approaches (that we will study
later), where the client sends its requests to a single node that is in charge of synchronizing with
the other replicas.

2.3.1 Quorum systems

To build a linearizable replicated data server, we are going to rely on the concept of quorum system.
Consider a set S of n servers Si,...5S,, e, S={S1,...,5}

o A quorum system of S is a set of "subsets of S", such that any two "subsets of S" have a non
empty intersection.

For example, if S = {51, S2, 53}, then
Q= { {51}, {51, 52,53} }
is a quorum system of S. The following set @’ is also a quorum system of S:
Q" ={ {51,952}, {51, 93}, {52, 55} }

Each element of @, and each element of @Q’, is called a quorum. Note that each quorum of @’
contains a majority of servers.
With quorum systems, the basic idea can be expressed as follows. Consider a quorum system of

S:
e Each write operation must update a quorum of servers.
e Each read operation must access a quorum of servers.
As such, it is guaranteed that each read request will retrieve the latest value that has been written.

Another way of presenting the idea of quorum systems is to say that if there are n replicas, each
write must update w replicas and each read must access r replicas, with w +r > n. In a system
with 3 replicas (n = 3), it is very common to set w = r = 2, which corresponds to the quorum



system )'. However a system may be configured differently depending on the needs. For instance,
a system could be configured with w = 3 and r = 1 to have very fast reads at the cost of slower
writes. Another limitation of this configuration is that if one server fails, then all write operations
will fail.

2.3.2 Fault tolerance with a quorum system

To ensure fault tolerance, we should rely on a majority rule for quorums for both read and write
operations. A majority rule states that » > n/2 and w > n/2. With such a rule, one is able to
tolerate up to f server crashes, with f < n/2.

Here are a few additional comments about quorums and fault tolerance:

o If w < n, we can still write if a node crashes

If » < n, we can still read if a node crashes

A configuration with n = 3, w = r = 2, can tolerate on crash
e A configuration with n =5, w = r = 3, can tolerate two crashes

It should also be mentioned that even if w and r are configured to be less than n, read and write
requests are usually sent to all replicas by the client. The value of w and r defines the number of
answers to wait for before considering an operation as terminated.

Based on the majority rule, if we consider the 2 quorum systems ) and @’ defined earlier, we
can conclude that @’ is an appropriate quorum system for fault tolerance. @ is not.

2.3.3 Linearizable data replication based on quorum systems
We present a solution to implement linearizability for data items in a system with at most f faults

(f <n/2).

Server code: The code executed by one replica 5; is presented in Figure 5. As it can be noticed,
in addition to the value of the data item, two additional information are maintained by the server:
a version number and the identifier of the client that most recently updated the item.

1 value = 0 # data item value

2 version = 0 # version number

3 clientId = O # id of the most recent client that has written the item

5 upon readReplica() by client c:

6 send (value,version,clientId) to c

8 upon writeReplica(val, v, id): #v is a version number; ¢d is the client id
9 if (v > version) or ((v==version) and (id > clientId)):

10 value = val

11 version = v

12 clientld = id

Figure 5: Read and write operation: code of a replica S;



The version number should be incremented every time a client updates the data item. The
information about the clientId is needed to deal with concurrent writes. As shown in line 9, the
writeReplica operation overwrites the current value only if: i) the version number of the operation
is higher than the current version number or, ii) the version numbers are equal and the identifier of
the client is larger than the one of the last client that updated the item.

Client code (first try): Figure 6 presents a first version of the client algorithm. The write
operation first requires to read from a quorum (line 14). Only the version number is a relevant
information in this case: the read operation is needed to obtain a valid version number. The client
issues the write to a quorum with a version number incremented by one (line 16).

The read operation issues a read from a quorum and returns the value associated with the
highest {version, clientId} observed.

13 def write(val, id): # id is the identifier of the client

14 readReplica(--, version, --) from a quorum

15 v = highest version number read

16 writeReplica(val, v+1, id) to a quorum # synchronous invocation
18 def read():

19 readReplica(val, version , id) from a quorum

20 let (v,id) be the highest (version number, client Id) read

21 let value be the value with version/clientId (v,id)

22 return value

Figure 6: Code of a client C' (Incorrect version)

The simple algorithm presented in Figure 6 is unfortunately not correct.

It does not ensure a linearizable execution as demonstrated by the scenario presented in Figure 7.
In this scenario, linearizability would require the read operation of Reader2 to return the new value
(or Reader1 to return the old value).

Client code (final version): To solve this problem, we should implement a technique called read
repair. During a read operation, if a client observes stale values, it should synchronously issue a
write to a quorum with the most recent value observed before terminating the read operation.

The new version of the client code is provided in Figure 8. The only modification compared
to the algorithm presented in Figure 6 is the call to writeReplica() during the read operation
(line 32).

The result is that, instead of the execution depicted in Figure 9 that corresponds to the scenario
presented in Figure 7 and which is obviously a non-linearizable execution, we can get the execution
depicted in Figure 10, which is linearizable.

2.3.4 Replication based on quorum systems in practice

Replication based on quorum systems is used by several NoSQL databases. Dynamo, the scalable
KV-store used internally at Amazon, is one of the systems that made this approach popular. Apache
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23 def write(val, id): # id is the identifier of the client
24 readReplica(--, version, --) from a quorum
25 v = highest wverston number read
26 writeReplica(val, v+1, id) to a quorum # synchronous invocation
28 def read():
29 readReplica(val, version , id) from a quorum
30 let (v,id) be the highest (version number, client Id) read
31 let value be the value with version/clientId (v,id)
32 writeReplica(value, v, id) to a quorum # synchronous invocation
33 return value

Figure 8: Code of a client C' (Correct version)

Cassandra? is a famous open-source database that also uses this approach. When applying quorum-
based approaches in practice, additional problems arise. We discuss some of them below.

Read repair and anti-entropy The read repair technique introduced in Algorithm 8 is not
only used to ensure linearizability. It is also used to update a replica that has a stale version of
the data because it experienced a failure. However, this mechanism slows down read operations.
Furthermore, if a data is not accessed very often, it may take time before a stale replica is updated.
As long as the replica is not updated, fault tolerance is reduced as the number of valid copies of the
replica is decreased.

To deal with both issues, some databases introduce an anti-entropy mechanism. Anti-entropy is
a background task that checks the health of data, and applies updates to stale replicas if need be.

Dealing with concurrent writes If two clients decide to write the same data item at the same
time, a quorum-based algorithm needs to decide what should be the final value to store. Imagine
that 2 clients, A and B, send a write request concurrently. Because of network transmission delays

’http://cassandra.apache.org/
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(among other things), it may be the case that not all replicas receive the requests in the same order.
In a system with 3 replicas, 2 may receive the request of A first while the last one will receive the
one of B. In this situation, we need a solution to ensure that all replicas will select the same value
as final value.

In Algorithm 5, the solution relies on the identifier of the clients to take a decision: the write
operation issued by the client having the largest identifier wins. It solves the problem but we can
ask ourselves whether it makes sense that client B has the priority over client A.

An alternative approach, adopted for instance by Cassandra, is to assign a timestamp to each
request, and to decide than the most recent request will win. This approach is called last-write-wins
(LWW). Such a solution can be better for fairness. As long as the clock of the different clients
remain well synchronized, such a solution can work. However, it might lead to non-linearizable
executions if clock skews are large. Discussing such a scenario in more details is beyond the scope
of this lecture.

About multi-datacenter configurations To increase the availability of data and services and /or
to reduce the latency of data accesses, some cloud applications are distributed over geographically
distant data centers. Although very desirable, linearizability might be difficult to achieve in such a
context for two main reasons.

The first reason is the limited availability that can be achieved. Imagine a scenario where
replicas of a data item are distributed over two data centers DC, and DC}. Due to a network
failure, communication between the two data centers is temporarily not possible: clients trying
to access the data are only able to contact the replicas in one data center (can be DC, or DCj,
depending on the client). The majority rule that we apply to ensure linearizability despite failures
implies that only a subset of the clients will be able to continue accessing the data. Indeed, either



the majority of replicas is in DC, or in DCj. If we assume that it is in DC,, it means that the
clients only having access to DC}, cannot read or write the data anymore, and so, the availability is
reduced.

To deal with this issue, a technique called sloppy quorums may be used. The idea is to create
more replicas inside a data center when w replicas are not accessible anymore from a client. This
avoids that write operations will fail. Once the connection between the datacenters is restored,
the additional replicas are destroyed, and the modifications in the different partitions are merged.
Even if such a solution can ensure the durability of write operations, it leads to non-linearizable
executions as read and write quorums may not overlap anymore.

The second reason is performance. As implied by the previous discussion, ensuring linearizabil-
ity in a multi-datacenter setup requires that at least some clients access a remote replica, i.e., a
replica that is not in the closest datacenter, to follow the majority-quorum rules. In this case, it
means that read and write operations may become slow as they involve potentially high latency
communication. Once again, the solution in this case is to lower the level of consistency to avoid
having to communicate with remote datacenters synchronously.

3 Single-leader replication

The quorum-based approach discussed previously considers data items with two operations: read
and write. We are now studying a more general problem where an object is replicated, and where
more complex update operations on the object can be applied.

3.1 Linearizability for objects

The definition of linearizability for data items can be repeated for general objects.
An execution o consisting of the concurrent execution of a set of processes is linearizable if there
exists a sequential execution 7 in which

(1) All operations in 7 that return a result return the same value as in o,
and

(2a) The start and the end of each operation op in 7 occurs at the same time, denoted by ¢°P, and
(2b) The time t° is in the interval [t5¥, te], where ¢ is the time at which the operation op started

in o and tof is the time at which the operation op ended in o.

3.2 Quorum systems for general objects?

To illustrate why quorum-based approaches do not work for general objects, we consider a replicated
counter object with two operations, increment and decrement. The two operations update the
counter.

Assume that increment and decrement are implemented by (1) reading the counter followed by
(2) writing the new value into the counter. If two clients ¢ and ¢’ execute increment concurrently,
the following can happen:

e c and ¢ get the same version number (line 25 of Algorithm 8) and the same value val of the
counter;
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e cand ¢ write val+1 as the new value (line 26 of Algorithm 8). While two increment operations
are requested, only one of them takes effect!

Mutual exclusion is needed here, as illustrated in Figure 11. However, mutual exclusion is tricky
to solve with process crashes. If a client ¢ crashes while in the critical section, the mutual exclusion
privilege must be taken from c. This require a failure detection algorithm to decide when to remove
privilege from c. The issue is that mutual exclusion may be compromised if ¢ is wrongly suspected
of being failed.

mutual exclusion

\/

- / / \ / / |
s1 L . >
eadRepIica/ writeReplica
s2 . >
readReplica \ /
s3 L >
writeReplica

Figure 11: Mutual exclusion for replicated objects

One may wonder why, in the above example, the operations increment and decrement are not
sent to the servers (instead of decomposing these operations using read and write operations). This
is precisely what will be done, but this is more difficult than it appears at a first look.

3.3 Single-leader replication

Single-leader replication is also sometimes called passive replication (or active/passive replication,
or primary/backup replication). In this approach, a single leader replica receives the requests from
the client, applies the corresponding operations, and sends updates to the other replicas (that are
hence passive). Figure 12 illustrates the basic communication scheme.

Such a replication strategy is adopted by many systems including relational databases (e.g.,
MySQL), non-relational databases (e.g., MongoDB), and message brokers (e.g., Kafka).
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Figure 12: Single-leader replication protocol
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In this approach, all operations that require a modification of the data have to be executed
through the leader. However, if one of the goal of replication is to improve the performance of the
system, the solution is to allow clients to access any replica for read-only operations. Such a solution
allows serving read request more efficiently, but it has an impact on the consistency. We will come
back to this point soon.

3.3.1 Synchronous and asynchronous updates

In Figure 12, updates are synchronously propagated by the leader to the other replicas. The leader
waits for an acknowledgment from all the followers that the update has been applied before sending
a response to the client.

With synchronous replication, if the leader crashes, the other replicas have an up-to-date copy
of the object. However, synchronous replication has drawbacks:

e It can be significantly impacted by delays. If a replica becomes slow or if some communication
are delayed, the duration of an operation increases from the point of view of the client.

e It reduces the availability of the system. If a replica crashes, we have to wait until it restarts
to be able to complete some update operations.

An alternative is to use asynchronous replication: the leader does not wait for an acknowledg-
ment that the update has been applied on the other replicas before answering to the client. Hence,
asynchronous replication can be much more efficient than synchronous replication. However, it has
the drawback that updates might be lost even after an acknowledgment has been sent to the client.
It means that the system becomes less fault tolerant and that it provides only limited consistency
guarantees.

In practice, when a system provides synchronous replication, it usually means that one replica
is updated synchronously while the other replicas are updated asynchronously, as illustrated in
Figure 13. This guarantees that we have an up-to-date copy of the data on at least two nodes,
without paying the price for fully synchronous updates.

Client
\(’,(]’U(’,Sl /rc.&;ponsc

Leader = — =
DRI ) ack 7
update RN ! ack
Followerl o~ ~
update ~ . _ !
s 4
Follower2 A

Figure 13: Single-leader configuration with one synchronous replica

3.3.2 Implementation of the replication mechanisms

In the implementation of leader-based replication, one major point to be discussed is about the
information included in the update messages sent by the leader to the other replicas. Two of the
main approaches are the following:
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Sequence of requests: The leader directly sends the requests to be executed to the followers that
should apply them in the same order as the leader. One limitation of such an approach is that
if the execution of a request involves non-deterministic actions, then the replicas might not
be consistent anymore (which implies that such an approach cannot be used in this case).

State updates: The leader executes the requests and sends updates that are modifications of the
object state to the followers. The updates may be captured in different ways. It may be
a log of all the modifications applied to the state at byte granularity. It may be a higher
level description of the writes applied to the state (e.g., modification of a row in a relational
database). Here, non-determinism is not an issue anymore, as the followers do not re-execute
the requests.

The two approaches can be compared from efficiency point of view. There is no clear winner. If
the execution of requests is very CPU intensive, a state-update approach might be more efficient.

3.3.3 Managing failures

We focus on the failure on the leader, as it has a specific role in this replication technique. The
process of reconfiguring the system to work with a new leader is called failover. Here are the main
steps involved:

Failure detection: The first step is to detect that the leader has crashed. Accurate failure de-
tection is challenging in cloud environments. Using long timeouts decreases the risk of false
positives at the expense of a lower availability of the system.

Selecting a new leader: Having all replicas agreeing on a new leader boils down to solving a
consensus problem (which should be handled carefully in a distributed system). The new
leader may be selected taking into account which follower has the more up-to-date version of
the data.

System reconfiguration: The clients needs to learn about the new leader to send the requests to
the right destination.

Many things can go wrong during the failover process. Because failure detection might not be
accurate or because the old leader restarted after a crash, we might end up having two leaders in
the system. This case needs to be handled. Also, some updates might be lost in a failover process,
because the elected leader does not start from the most recent object state (the risk of loosing
updates is higher with asynchronous replication).

3.3.4 About consistency

For a single-leader replication protocol to provide linearizability, all requests (including read re-
quests) have to be processed sequentially by the leader. However, if replication is used to improve
the performance of read operations, any replica should be able to serve read requests. In this case
linearizability cannot be ensured. We illustrate the problem in Figure 14 assuming asynchronous
replication (but the problem also exists with synchronous replication).

Figure 14 illustrates the fact that clients might observe inconsistencies. However, if we stop
issuing new update operations, and if the leader does not crash, the replicas will eventually become
consistent again. We say that such a system provides eventual consistency.

13
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Figure 14: Single-leader non-linearizable execution

Eventual consistency can work well in practice because most often followers will be updated in
a very short time. Hence, the probability of a client observing inconsistencies is small.

In some cases, we might still want to provide consistency guarantees that are a bit stronger. For
instance, we might want to ensure that the scenario presented in Figure 14 does not occur, that is,
guaranteeing that a client sees its own writes. This is called read-after-write consistency. Here are
two possible solutions to ensure read-after-write consistency:

e We can force some requests to go through the leader. These requests are the one that could
access objects that the user may modify. In a social network, a user may modify her profile.
Hence, all requests implying reads of the user own profile should go through the leader to
ensure read-after-write consistency.

o If a user can edit a majority of the objects, the previous approach is not efficient. An alterna-
tive is to rely on time (preferably logical time). The idea is to remember the time of the most
recent update issued by a client, for instance using a sequence number, and to ensure that the
state of the replica serving a read request includes at least the corresponding updates.

4 Multi-leader replication

Multi-leader replication (also called active replication or active/active replication) is a replication
approach where the clients can contact any replica to execute their read and update requests.

Obviously, such an approach raises additional challenges with respect to consistency. In a first
step, we will discuss solutions that ensure linearizability. Then we will discuss about solutions
providing weaker guarantees.

4.1 Solutions that provide linearizability

Multi-leader replications strategies that provide linearizability need to ensure that despite the fact
that any replica may receive requests to execute, all replicas should execute the same requests in
the same order. To ensure this, they rely on a communication primitive that is called total order
broadcast (or atomic broadcast).

We can informally define® the properties of total order broadcast as follow:

e All correct processes deliver the same set of messages.

3Formally defining total order broadcast is outside the scope of this course
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e Any message is delivered at most once by a process.
e Any message broadcast by a correct process is eventually delivered by all correct processes.
e All processes deliver the messages in the same order.

To ensure linearizability with multi-leader replication, it is enough to ensure that each request
to be executed is first total-order broadcast in the set of replicas, and to execute the requests in
the order they are total-order delivered (this is called state-machine replication). Such an approach
assumes that the execution of requests is deterministic.

Note that solving total order broadcast in a distributed environment is equivalent to solving
consensus. It is thus a difficult problem.

4.2 Multi-leader replication and weak consistency

In most cases, in a setup where all replicas are executed in the same data center, multi-leader
replication does not provide any advantage over single-leader replication. Since it is simpler to
implement, single-leader replication is most often used in this case.

However, in a setup where replicas are distributed over multiple data centers, multi-leader
replication can become interesting.

Obviously, and as discussed earlier, linearizability is too costly to ensure in a multi-cloud setup.
Instead, we have to go with weaker consistency guarantees.

The two main advantages of multi-cloud environments are: i) a performance increase by bringing
the data closer to the users; ii) a higher availability by being able to survive to the crash of one data
center. However, to fully take advantage of multi-cloud deployments, any replica should be able to
process requests locally. This is what multi-leader replication should allow.

Allowing multiple replicas to apply updates locally raises a new problem: conflicting writes may
be executed. Indeed, if two replicas execute updates that modify the same data, we later need to
resolve this write conflict.

One may want to resolve conflicts synchronously, i.e. synchronizing with the other replicas
to resolve conflicts before terminating an update operation. In this case, we will mostly lose the
advantages of using multi-leader replication for a multi-cloud setup. Hence, write conflicts have to
be solved asynchronously.

Different approaches might be used to deal with conflicting writes:

o Conflict avoidance: If one can ensure that any two modifications of the same part of the
application state goes through the same leader, then write conflicts will be avoided

o Defining priorities for updates: techniques such as last-write wins or client with higher iden-
tifier wins may be applied.

o (Clustom conflict resolution logic: Some systems allow the programmer to define a callback
that is going to be executed to resolve conflicts when one is detected. Such a callback may
be called during a write operation that generates a conflict or during a read operation that
accesses a data for which a conflict has been detected.

It should also be mentioned that collaborative editing is a case of multi-leader replication. If
users are allowed to edit shared documents offline, this is an extreme case for asynchronous write
conflicts resolution.
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To go further

Some references can complement the material presented in these lecture notes:
e Chapter 5 of Designing Data-Intensive Applications by Martin Kleppmann

e Section Linearizability in Chapter 9 of Designing Data-Intensive Applications by Martin
Kleppmann

Fault tolerance through replication for Cloud systems is an active research topic, with many
important new publications every year. To complement this course, among the papers published
recently, we can mention [1] that illustrates the fact that building fault tolerant systems that can
always handle fault correctly is difficult: Considering 25 widely used fault-tolerant software, the
authors study 104 scenarios that lead to catastrophic failures. Regarding eventual consistency
versus stronger consistency guarantees, a study of a very larger scale eventually consistent system
shows that in almost all cases, it provides the same results as a linearizable system [2].
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