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Microservices (1/2)

An architectural style for the design of applications and software
services.

This paradigm has connections and synergies with other software
engineering/management trends such as DevOps and 12-factor apps.

A microservice architecture is a service-oriented architecture (SOA),
in which applications are decomposed into small, loosely-coupled
services, with each service being relatively small and focused on a
specific functionality.

The opposite of a “software monolith”, a.k.a. a “monolithic architecture”.
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Microservices (2/2)

Each service has an independent codebase.

Each service is owned, developed/maintained, and operated by a
small team.

Each service can be viewed as its own mini-application, with
independent tests, builds, configuration, data and deployments.

Services are executed in separate processes and communicate
through network APls.

The API of a given service can be synchronous or asynchronous.



Microservice-based architectures — Examples (1/2)

Hipster Shop

e An open-source demo application created by Google

e E-commerce Web application

e Available from: https://qgithub.com/GoogleCloudPlatform/microservices-demo
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Microservice-based architectures — Examples (2/2)

DeathstarBench

A set of open-source demo applications/benchmarks created by Cornell University
Several applications: Social network (see figure below), Hotel reservation, Media service, ...

Code available from: https://github.com/delimitrou/DeathStarBench/

Research paper: http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
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Microservices — Potential benefits

Small and focused teams
Better communication between teams

Increased agility, enabling faster evolution and more frequent deployments
= “Continuous integration” (Cl) and “Continuous delivery” (CD)

Continuous innovation (e.g., experimentation with new features through A/B testing)

Modularity
= Simplified support for localized changes

= “Polyglot” design: Simplified support for using diverse technologies (programming languages
and frameworks, libraries, storage systems) in different parts of the global application.

Improved fault isolation
Better scaling and optimized resource usage

Improved observability
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Microservices — Challenges

Complexity (e.g., due to increased distribution)

API versioning and integration

Data integrity and consistency

Monitoring and logging

Service discovery and routing

Availability

Performance issues (e.g., increased average and tail latencies)

Achieving insightful and efficient end-to-end observability (distributed, large-
scale debugging and profiling

R. Lachaize, T. Ropars

10



Communication protocols (1/4)

All interactions between apps/services are based on network (layer-5 /
application-level) protocols. We will describe the main ones.

e Request-response protocols

= Can be either synchronous (client blocks until reply) or asynchronous
(non-blocking)

= The asynchronous pattern:

e is more complex but more efficient and resilient (introduces less coupling between
services).

e requires identifiers for associating requests and responses.

= Main protocols: HTTP 1.1 and HTTP/2
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Communication protocols (2/4)

e Request-response variants:

= Message queues
e An asynchronous request-response pattern can also be implemented with message queues.
e Using one (single consumer) queue for each direction.
e Example: AMQP (point-to-point mode), NATS (request-reply mode)

= Websockets

e Supports low-latency, bidirectional communication (server can send messages without
awaiting client requests).

e Uses HTTP as bootstrap.

= Remote Procedure Calls

e Higher-level construct (procedure calls rather than messages). Supports bidirectional streams.
e Example: gRPC (by Google - https://grpc.io) based on HTTP/2
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Communication protocols (3/4)

e Publish-subscribe protocols:

= Allow decoupling message producers (“publishers”) from message
consumers (“subscribers”) through topics subscriptions.

Are inherently asynchronous.

Support unidirectional, one-to-many or many-to-many communication
patterns.

Enable loose coupling between services, and even transparent integration.

= Example: AMQP (pub-sub mode), NATS (pub-sub mode)

R. Lachaize, T. Ropars

13



Communication protocols (4/4)

e Remark: Idempotent requests

= Because cloud applications are prone to (machine/service/communication) failures, a
given message may be sent and received multiple times.

= Regardless of the chosen communication pattern and protocol, in order to
handle failures in a correct and simple way, it is generally advised to design
idempotent application-level protocols.

= A message is idempotent if processing it N times produces the same result as
processing it once.

= This requires:
e Using unique message identifiers.
e Designing services and data models that keep track of such identifiers (or do not need them)
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Gateways

e Act as a stable entry point for requests sent by external clients to a cloud
service.

e Play various roles:

= SSL termination (i.e., termination of the SSL channel established between a client
and the entrance of the cloud platform).

= Client/service authentication.

= Abstracting the internal (and possibly moving) architecture of a high-level service
(e.g., monolithic design vs microservice architecture).

= Abstracting the dynamic nature of the service implementation (e.g., due to
autoscaling and fault tolerance).

= Providing access to (relatively) static resources/data (e.g., HTML/CSS files).
e A single gateway can perform one or several roles.

e Several gateways may be layered.

R. Lachaize, T. Ropars
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API gateway (1/6)

e A particular type of gateway in the context of a microservice architecture.
= Exports a high-level service API to the external clients (typically HTTP/REST-based).
= Forwards the client requests to the appropriate service(s) in the backend architecture.

e Main benefits:

= Decouples clients from services (e.g., services can be versioned or refactored
without introducing strong dependencies).

= Allows using non-HTTP protocols for the services (e.g., messaging protocols).

e Main responsibilities:
= Routing
= Aggregation
» Feature offload

R. Lachaize, T. Ropars 17



API gateway (2/6)

Routing

e One of the most common functions of
a gateway.

e Forwards requests to backend
services (which are in a private network
not directly accessible from clients).

e The selection of the recipient service
instance(s) is typically based on routing
rules defined with respect to:

client

I

API| gateway

a

—

= In-request metadata such as IP, port, ;
protocol headers, target URL service A

service A| |service B

= Gateway-level statistics regarding load
balancing, availability of the different service
replicas

R. Lachaize, T. Ropars
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API gateway (3/6)

Aggregation

A gateway may also act as an aggregator.

In such a setup, a single external client request received by the gateway is translated (by the gateway
itself) into a sequence of requests to multiple services.

Benefits:
= Provides higher-level operations to the clients.

= Helps improving the client-perceived latency by reducing the number of communication round-trips
between the client and the cloud service.

Drawbacks:

= May increase coupling between the gateway and the service. The gateway may itself become a
monolith.

= May significantly increase the processing load on the gateway.

An alternative design consists in using a separate aggregation service.
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API gateway (4/6)
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API gateway (5/6)
Offloading

e A gateway can also offload some functionality from the individual services, if

such functionality is a “cross-cutting” concern (i.e., not a part of the business
logic of a service).

e Typical examples:
= Authentication
= Logging
= Rate limiting, retry policies, circuit breaking
= Compression

e Like for aggregation, putting too many features on a gateway introduces risks
of reintroducing monoliths or performance bottlenecks.

R. Lachaize, T. Ropars
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API gateway (6/6)

An APl gateway may become a performance bottleneck and/or a single point of
failure.

It is thus necessary:
= To monitor the performance/load of a gateway (not just the backend services)
= To replicate the gateway and use load balancing (e.g., via DNS services)

API gateways are typically implemented using HTTP reverse proxies (for example: Nginx,
HAproxy).

API gateways can be deployed and managed directly by cloud tenants

... or cloud tenant can also choose to rely on a managed gateway service provided by
the cloud platform. Examples: AWS API| Gateway, Google Cloud Endpoints.

R. Lachaize, T. Ropars 22



Internal vs. external service commmunication

There are various categories of network traffic in a (cloud) cluster:
e Ingress traffic (a.k.a. “North-South” traffic)

= Requests from external clients into the cluster
= Handled by “API gateways” (also known as “ingress controllers” or “ingress gateways”)

¢ Internal traffic (a.k.a. “East-West” traffic)
= Communications between (micro)services running on the cluster
= Handled by the distributed “service mesh” (this concept will be detailed later)

o Egress traffic

= Communications from a service running on the cluster to an external service (e.g., a remote
storage service)

= Handled by “egress gateways” (also known as “egress controllers”)
e Crucial for monitoring and controlling outgoing requests (e.g., for security purposes)
e Typically implemented at the level of the service mesh

R. Lachaize, T. Ropars
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Service mesh (1/9)

e A microservice architecture introduces complex and frequent communications between
various services.

e Given that failures are likely to happen, services must be resilient and almost immune
to communication issues.

e As mentioned previously (“declarative communications”):

Dealing with network issues and advanced network configuration aspects (e.g., dynamic
service discovery, security) should be addressed at the infrastructure level rather within

applications.

This yields simpler and more robust applications and supports dynamic modifications of the
networking configuration.

Within a cloud native infrastructure, a service mesh is a distributed system in charge of
managing these aspects.

R. Lachaize, T. Ropars 24



Service mesh (2/9)

e The main building block of a service mesh is a proxy.

= There is typically one proxy instance running next to each service instance.

e (In other words, there are many proxies deployed on each physical host of the system.)
e Some designs also support an alternative setup with a single proxy per host.

e Using one proxy per service results in higher resource consumption but yields simpler
configurations and higher performance.

= A proxy performs the following tasks:
e Intercepting all the incoming and outgoing traffic of its associated service instance.
e Handling the intercepted traffic according to specific configuration code/rules.
e Collecting and reporting metrics.

R. Lachaize, T. Ropars
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Service mesh (3/9)

e Examples of proxy projects/implementations used in service meshes:
= Envoy (https://www.envoyproxy.io)

Istio (https://istio.i0)

Linkerd (https://linkerd.io)

Consul connect (https://www.consul.io)

(Note: some of these projects can also be used for other purposes.)

e Notes:
= Proxies are often deployed using a “sidecar container” pattern.

= |n the Kubernetes architecture, a proxy runs in the same “Pod” as its associated
service.

= (These notions will be described in more details later.)

R. Lachaize, T. Ropars
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Service mesh (4/9)

Distributed architecture:

e The collection of all the proxies in the service mesh is called the “data plane”.

e The component in charge of managing the data plane is called the “control
plane”.

= |n particular, the control plane is in charge of deploying a consistent, distributed
configuration on all the proxies and of reconfiguring them as needed over time.

= The control plane usually exposes an API that can be used to configure the service
mesh.

= |n addition, the control plane hosts other tasks (e.g., for telemetry and policy of the
hosted services).

R. Lachaize, T. Ropars
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Data plane

Service mesh (5/9)

Control plane
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Service mesh (6/9)

The main concerns handled by a service mesh can be divided into the
following categories:

e Traffic management
e Failure handling
e Security

e Tracing and monitoring

R. Lachaize, T. Ropars
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Service mesh (7/9)

Traffic management:

e General goals:
= Managing traffic between services within the mesh
= Managing traffic between in-mesh services and external services

e Within a mesh, each service can have multiple endpoint instances.

e The service mesh is in charge of performing request routing to an endpoint
instance, according to considerations such as:

= Service discovery (identification of new/removed instances)
= Load balancing

= Service versions
= Environment type (e.g., testing vs production)

e Various criteria can be used for routing decisions:
= Proxy configuration settings, proxy statistics, request contents/metadata

R. Lachaize, T. Ropars



Service mesh (8/9)

Failure handling:

General goals:
= Maintain service availability and correctness whenever possible
= Mitigate the performance impact of failures

Communication failures can (and will) occur due to various network or infrastructure issues.

Two types of failures:
= Transient: generally solved by request retries
= Non-transient: require more complex/specific handlers

Basic techniques/parameters:
= Retries
= Timeouts
= Circuit breakers (rejecting further accesses to a failed service, in order to avoid cascading failures)

The above mechanisms can be configured for each service (or service version).

The service mesh can also be used to inject failures (request aborts or delays) for testing purposes.
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Service mesh (9/9)

e Security:

= General goals:
e Authentication (client/server, end user)
e Authorization / access control (client/server, end user)
e Confidentiality (traffic encryption)
e Management of secrets (credentials, keys)

e Tracing and monitoring:

= General goals:

e Collecting and reporting metrics regarding traffic characteristics, performance, errors

e End-to-end (i.e., cross-service) request tracing (via correlated request identifiers), to facilitate
traffic observation, troubleshooting and performance debugging
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e Design patterns
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Container orchestration (1/2)

e Vocabulary warning: Not to be confused with the expression “service
orchestration”, which is often used with a somewhat different meaning.

e A container orchestrator is:
= a software system

= ... in charge of simplifying (through automation) the management of a
fleet of container-based applications

= ... on a cluster of (virtual or physical) machines.

R. Lachaize, T. Ropars
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Container orchestration (2/2)

The main duties of a container orchestrator include:

e The provisioning and deployment of containers

e The setup of the network configuration of the containers
e The placement decisions for the containers on the cluster nodes
e Health monitoring (for containers and nodes) and appropriate reactions when needed

e Load balancing between containers

e Autoscaling decisions (mostly for horizontal scaling but also possibly for vertical scaling)
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Container orchestration — Case study: Kubernetes

Kubernetes: currently the most popular container orchestrator
Also known under the abbreviation “k8s”

A project initially developed by Google and influenced by the design of previous (closed,
internal) cluster/container management systems used within the company.

Released as open source in 2014. Now managed by the Cloud Native Computing
Foundation (CNCF).

Implemented in the Go language.

A good/short introductory reference (for the description of the design principles):

= B. Burns et al. Borg, Omega and Kubernetes: Lessons learned from three container-management

systems over a decade. ACM Queue. January-February 2016.
https://static.googleusercontent.com/media/research.google.com/fr//pubs/archive/44843.pdf
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Kubernetes components

e Kubernetes is a distributed system based on 3 main categories of components.

= Master components: Provide the “control plane” of the cluster.

e Make global (cluster-wide) decisions. E.g., regarding the scheduling/placement of tasks, the
number of replicas for a given service, the response to specific events like failures.

e Are typically deployed on dedicated nodes for better robustness.

= Node components: Provide the “data plane” of the system. Act as local agents on
the cluster resources :

e For health and performance monitoring
e For handling the orders issued by the control plane (e.g., running a new container)
e For setting up the network connectivity of the containers

= Addons: Provide additional services, such as:
e DNS services
e High-level user interfaces (e.g., management/monitoring dashboards)

R. Lachaize, T. Ropars
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Kubernetes components overview
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Kubernetes components — Details (1/5)

e Master components

= Kube-api-server: the front end for the Kubernetes control plane

= Etcd: a strongly consistent and highly available key-value database

e Exposes the API of the control plane
e Designed for horizontal scaling (load balancing)

Master node

Etcd

kube-API-server

kube-scheduler

kube-controller-
manager

e Used to store all the cluster configuration/metadata, including the current state and desired

state of the cluster

Kube-scheduler: monitors the creation of new “Pods” and selects nodes for them

e Placement decisions for Pods are based on various factors, including: individual and collective
resource requirements, hardware/software/policy constraints, affinity and anti-affinity

specifications, data locality ...

R. Lachaize, T. Ropars
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Kubernetes components — Details (2/5)

e Master components (continued)

= Kube-controller-manager: runs (most of) the Kubernetes controllers

e Logically, each controller is a distinct process

e However, to reduce complexity, all controllers are compiled into a single binary and run in a
single OS process

e Some controllers can also run externally

= Cloud-controller-manager: runs controllers that interact with the underlying cloud

provider
e Allows the cloud provider’s code and the Kubernetes code to evolve independently of each
other

R. Lachaize, T. Ropars
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Kubernetes components - Details (3/5)

Remarks:

e Master corﬁponents are replicated on multiple master nodes for failover and
high availability.

e “Managed Kubernetes” offerings typically offload the burden of
hosting/administrating these master components from the end-users (cloud
tenants).

= Examples : Google Kubernetes Engine (GKE), Azure Kubernetes Service (AKS),
AWS Elastic Kubernetes Service (EKS).
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Kubernetes components — Details (4/5)

e Node components: Run on every compute (worker) node of the cluster

I |
Worker node
= Kubelet: local agent in charge of running containers in “Pods”
e Reads and applies the Pods specifications kube-proxy Containe
e Checks the health of the containers 05 network (e.g., containerd)
e Does not manage the containers that were not created by Kubernetes (9. Pl I:‘_‘_‘_‘_'_%'_
] |

= Kube-proxy: local network proxy

e Maintains the network configuration/rules on the cluster nodes (regarding communication with
other cluster nodes and external nodes), in order to support the Kubernetes “service” concept.

e Typically relies on the local OS services (e.g., packet filtering) to implement traffic forwarding.

= Container runtime: in charge of executing containers

e The Kubernetes CRI (Container Runtime Interface) provides an abstract interface that allows
plugging various runtime implementations (e.g., Docker, containerd, cri-o, ...)
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Kubernetes components — Details (5/5)

e Add-ons: Some examples

= DNS: Serves DNS records for Kubernetes services
e Containers started by Kubernetes automatically include this DNS server for their DND lookups

= Web Ul (Dashboard)

e General-purpose Web-based user interface for Kubernetes clusters
e Allows managing and troubleshooting the Kubernetes cluster, and applications running on the cluster

= Container resource monitoring
e Records generic time-series of metrics about containers in a centralized database
e Provides a user interface to browse the collected data

= Cluster-level logging
e In charge of collecting and saving container logs to a central store with a search/browse interface.

R. Lachaize, T. Ropars
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Kubernetes — Main concepts (1/4)

Pods:

A pod is an abstraction encapsulating a set of containerized components.
A pod is the basic scheduling unit for Kubernetes.
There are two main setups in practice:

e Pod with a single container

e Pod with multiple containers that work together

All the containers within a pod are guaranteed to be deployed on the same machine and
can share resources.

Each pod runs a single instance of an application (there is no replication/sharding within a pod).

Networking:
e Each pod is assigned a unique IP address.
e Containers within the same pod share the same network namespace (including network ports).
e Containers within the same pod can communicate using localhost.

Storage:

e A pod can specify a set of shared storage volumes, which can be accessed by all the containers within the
pod.

R. Lachaize, T. Ropars
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Kubernetes — Main concepts (2/4)

e Service;

= |n Kubernetes, a “service” is an “endpoint” abstraction allowing to expose an application (running
as a set of pods, characterized by a given “label”) as a network service.

= Useful to abstract the fact that the pod instances providing a given functionality can vary over time
(e.g., due to scaling or load balancing).
e Volume:

= On-disk files in a container are ephemeral (they disappear upon termination of the container),
which can be limiting in certain setups/situations.

= Volumes survive container crashes/restarts and support sharing between containers in a pod.
= The lifetime of a volume corresponds to the lifetime of the enclosing pod.
= Many types of backing storage systems are supported.

e Persistent volume:

= Unlike a standard volume, a persistent volume can exist/survive independently from the pod(s)
that may consume it. The same persistent volume may be used successively by different pods.
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Kubernetes — Main concepts (3/4)

e Namespace:

= Warning: Same word but not the same concept as the notion of (Linux) namespaces
used to implement containers.

= Kubernetes allows using multiple virtual clusters on the same physical cluster.

= Such a configuration is useful for environments in which there are many users spread
across multiple teams and projects.

= The notion of “hamespaces” is used to define such virtual clusters.

e Provides a scope for naming resources (a resource name must be unique within a given
namespace).

e Supports resource quotas to control the division of resources.

R. Lachaize, T. Ropars 47



Kubernetes — Main concepts (4/4)

e Controllers:

= A concept inspired from other fields like robotics and automation/control theory.

= A “control loop”:

e is an infinite loop whose purpose is to regulate the behavior of the system.

e continually monitors the current state of the system (here, a cluster) and acts accordingly in
order to reach a desired state (analogy: a thermostat).

= Kubernetes uses many different controllers, each in charge of a specific aspect of
the cluster state.

e A set of built-in controllers (running inside the kube-controller-manager) supporting the
important core behaviors.

e Also possibly additional, user-defined controllers (that can run within Kubernetes, as a set of
pods, or outside).
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Kubernetes — Some examples of controllers (1/2)

DaemonsSet: ensures that all (or some) nodes of the cluster run a copy of a Pod.
= For example, useful to run a storage daemon or a logging/monitoring daemon on every node.

ReplicaSet: maintains a stable number of replica pods running at any given time.

Typically used to enforce a given replication factor in order to provide high availability guarantees.

Deployment: provides declarative updates for Pods and ReplicaSets.
= A "deployment object” is used to describe a desired state.

= Then the deployment controller changes the actual state at a controlled rate, in order to reach the
desired state.

Useful for many purposes: rolling out and monitoring ReplicaSets, scaling ReplicaSets, updating
Pods, rolling back to earlier deployment versions, ...
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Kubernetes — Some examples of controllers (2/2)

e StatefulSet: manages applications that have one or more of the following
requirements:

= Stable, unique network identifiers

= Stable, persistent storage

= QOrdered, graceful deployment and scaling
= QOrdered, automated rolling updates

e Unlike a ReplicaSet, a StatefulSet has the following properties:
= Each replica gets a persistent hosthname with a unique index (e.g., db-0, db-1, etc.)

= Each replica is created in order from lowest to highest index, and the creation will pause until the
Pod at the previous index is healthy and available. (The same principle also applies when scaling
up the number of replicas.)

= When a StatefulSet is deleted, the replica pods are deleted in order from highest to lowest. (The
same principle also applies when scaling down the number of replicas.)
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Kubernetes — Metadata management

e |In Kubernetes, all kinds of resource objects (e.g., instances of Pods, ReplicaSets, Nodes, etc.)
carry some metadata.

e These metadata are useful for different purposes, such as:
= Keeping track of important information
= Categorizing resource instances, and associating them with each other
= Defining custom information and behaviors
= Note: In most cases, these metadata do not imply any built-in semantics by default

e There are different types of metadata:
= Labels: key-value pairs attached to an object (analogy: catalog of dishes)
= Selectors: used to identify/filter objects based on their labels (analogy: filter to find gluten-free deserts)

= Annotations: key-value pairs to store additional, non-identifying, arbitrary metadata, such as build information or
release notes (analogy: list of ingredients and their origins)

Credits and more information:

° https://yuminlee2.medium.com/kubernetes-labels-selectors-and-annotations-2e3e931282a7
° https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
° https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
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Kubernetes metadata — some details about labels (1/2)

e “Labels are intended to be used to specify identifying attributes of objects that are
meaningful and relevant to users, but do not directly imply semantics to the core system.”

e “Labels enable users to map their own organizational structures onto system objects in a
loosely coupled fashion.”

e Labels can be attached to objects at creation time and subsequently added and modified
at any time.

e Each object can have a set of key/value labels defined. Each Key must be unique for a
given object.

(Source: Kubernetes documentation - https://kubernetes.io/docs/concepts/overview/working-with-
objects/labels/)
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Kubernetes metadata — some details about labels (2/2)

Example Labels:

e '"release" : "stable” , "release" : "canary"

e '"environment" : "dev", "environment" : "ga" , "environment" : "production”
e 'tier": "frontend” , "tier" : "backend” , "tier" : "cache"

e '"partition" : "customerA” , "partition" : "customerB"

e "track": "daily” , "track" : "weekly"

(Source: Kubernetes documentation - https://kubernetes.io/docs/concepts/overview/working-with-
objects/labels/)
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Container Orchestrators — Interfaces with the host (1/3)

Several standard interfaces have been specified:

e Container Networking Interface (CNI)

= “a specification and libraries for writing plugins to configure network interfaces in
Linux containers, along with a number of supported plugins.”

= https://qgithub.com/containernetworking/cn

e Container Storage Interface (CSl)

= “A specification enabling storage vendors to develop a plugin once and have it work
across a number of container orchestration systems”

= Main scope: provisioning and attaching storage volumes, managing snapshots.
= https://github.com/container-storage-interface/spec/blob/master/spec.md
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Container Orchestrators — Interfaces with the host (2/3)

Container Runtime Interface (CRI)

e Defined in the context of Kubernetes

e Related to the the OCI (Open Container Interface) runtime specification ... but somewhat different and
complementary

= The OCI runtime specification defines the configuration, execution environment, and lifecycle of a container. In
particular, it defines how to properly run a container "filesystem bundle” which fully adheres to the OCI Image
Format Specification.

= The container runtime interface (CRI) is an API for container runtimes to integrate with the kubelet
component on each compute/worker node.

= The Kubernetes CRI leverages OCIl-compliant runtimes.

e A CRI-compliant runtime has additional concerns compared to an OCl-compliant runtime.
= These concerns include image management and distribution, storage, networking, snapshotting, etc.

= A CRI-compliant runtime is aimed at providing the functionality required to manage containers in a dynamic cloud
environment whereas an OCl-compliant runtime focuses on a narrower goal: creating and running containers on a
local machine.
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Container Orchestrators — Interfaces with the host (3/3)

Container Runtime Interface (CRI) — Continued

e Wrap-up:

= The notion of CRI allows decoupling the kubelet from the underlying container runtime (in a flexible and
extensible way).

= A CRI-compliant runtime (such as cri-o) typically delegates the management of container execution to a
(lower-level) OCI runtime (such as runc or crun).

e Examples of CRI-compliant runtimes:
= containerd, cri-o, kata containers (VM-based), Firecracker (VM-based)

= Warning: Docker is not CRI compliant and deprecated (for usage on Kubernetes worker nodes). See:
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/

e For more information:
= https://www.capitalone.com/tech/cloud/container-runtime/

= https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/

= https://github.com/kubernetes/cri-api/blob/master/pka/apis/runtime/v1/api.proto
R. Lachaize, T. Ropars

64


https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto

Outline

e Origins and main characteristics

e Microservices

e Container orchestration

e Design patterns
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Cloud native design patterns — Overview (1/2)

e Many cloud native applications rely on a set on common, generic design patterns
based on containers.

e Adhering to these patterns can help:
= Building more efficient, adaptable and robust distributed applications
= |mproving developer productivity and fostering code reuse

= Facilitating technical discussions between architects, developers, teams by providing a common
vocabulary and conceptual framework

e Acknowledgments:
= This part of the lecture is heavily inspired by the following book:
e Designing distributed systems. Patterns and paradigms for scalable, reliable services. O'Reilly, 2018.

e Authored by Brendan Burns (co-founder of the Kubernetes project, distinguished engineer at Microsoft Azure
and previously at Google Cloud Platform).

e Provides code examples based on Kubernetes.

= For additional concepts and vocabulary, see also:
e https://docs.microsoft.com/en-us/azure/architecture/patterns/
e http://www.cloudcomputingpatterns.org
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Cloud native design patterns — Overview (2/2)

e We will describe several kinds of patterns:

Single-node patterns: Sidecar pattern
forming the basic elements of a
distributed system

Ambassador pattern

Adapter pattern
Serving patterns: Replicated, load-balanced services
for long-running, request-oriented e
applications
Scatter/gather pattern
Batch computational patterns: Work queue system

for intermittent, parallel computations on

an input dataset Event-driven batch processing

Coordinated batch processing
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Cloud native design patterns — Outline Overview

Single-node patterns:
forming the basic elements of a
distributed system

Serving patterns:
for long-running, request-oriented
applications

Sidecar pattern

Ambassador pattern

Adapter pattern
Replicated, load-balanced services

Sharded services

Scatter/gather pattern

Batch computational patterns:
for intermittent, parallel computations on
an input dataset

Work queue system

Event-driven batch processing

Coordinated batch processing
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The sidecar pattern (1/2)

e A single-node pattern based on two containers:
= Application container
= Sidecar container

e The sidecar is co-scheduled with the application container and they can
share resources (e.g., the network).

= For example, in the case of Kubernetes, this is achieved using a Pod.

e The sidecar is generally transparent.
= The application is unaware of its presence.

= Because the application and sidecar containers interact indirectly (e.g., through the

network, file system or other OS facilities), the application can be developed/built
completely independently.

R. Lachaize, T. Ropars 70



The sidecar pattern (2/2)

e The purpose of the sidecar is to augment/improve the behavior of the application.

= This can be useful both for legacy and cloud native applications.

e Typical use cases:
= |ntrospection of the application container (e.g., for resource usage monitoring or debugging)
= Updating the configuration of the application containers (e.g., through shared files)

= |ntroducing network security features (e.g., encryption and authentication)

= |Implementing the “data plane” in a service mesh architecture (service discovery, load
balancing, tracing, etc.)

e One of the main benefits of the sidecar pattern is code reuse. However, achieving
modularity and reusability requires care about the following aspects:

= Parameterized containers
= Definition of the API surface of the containers
= Documentation of the containers (e.g., within Dockerfiles)
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The ambassador pattern

e A particular form of sidecar pattern.

This expression is usually dedicated to sidecars in charge of brokering
communications between application containers and the outer world.

Use cases:

= The features handled by the control plane of a service mesh, which may also include
the following examples.

= |Implementing a (transparent) proxy supporting routing to a sharded service.

= Implementing a (transparent) proxy for service brokering.

e For example, a service may rely on a database, that is provisioned differently in various cloud
environments (e.g., local vs. remote, laaS vs. PaaS)

e The proxy handles the lookup and connection to the database service and abstracts away the
differences.

= Implementing (transparent) request splitting for testing purposes.

R. Lachaize, T. Ropars 72



The adapter pattern

A particular form of sidecar pattern.

The adapter container is used to modify the interface provided by the application
container, so that it conforms to a specific/homogeneous interface expected for all
the applications in a given distributed system/infrastructure.

The modifications can be related to the data format and/or the service API.

Typical use cases:
= Monitoring (e.g., collecting performance metrics)
= Advanced health checks

= Logging

R. Lachaize, T. Ropars
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Cloud native design patterns — Outline Overview

Single-node patterns:
forming the basic elements of a
distributed system

Serving patterns:
for long-running, request-oriented
applications

Batch computational patterns:
for intermittent, parallel computations on
an input dataset

Sidecar pattern

Ambassador pattern

Adapter pattern
Replicated, load-balanced services

Sharded services

Scatter/gather pattern

Work queue system

Event-driven batch processing

Coordinated batch processing
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Replicated load-balanced services (1/3)

e Principle:

» Horizontal scaling using several
instances (“replicas”) of the same
service, in order to improve performance
and reliability.

= The load balancer is the service entry
point and routes a given request to a
given replica.

e The load balancer can be implemented:

= either as an ambassador (embedded
within every client)

= or as an explicit, standalone service.

R. Lachaize, T. Ropars
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Replicated load-balanced services (2/3)

e The load balancer can use readiness probes to help the determine when a
new replica is ready to server requests.

= The load balancer can query a new replica through a specific HTTP URL to check if it
is ready.

= The readiness probe can be implemented as a sidecar of the service.

e For stateful services, the load balancer can use a routing algorithm that
preserves “session stickiness”, so that the requests from the same client are
routed to the same replica.
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Replicated load-balanced services (3/3)

e In the case of application requests with read-only semantics and implemented with
HTTP, performance can be improved by introducing a Web caching layer between

the load balancer and the service replicas. _
client request

|

Load balancer

I

Web cache Web cache

Cache miss ! I

replica replica replica
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Sharded services (1/2)

Also known as “partitioned services”.

In contrast to a replicated service, in the
case of a sharded service, each service

client request client request

instance (also named “shard”) is only R1 for item A R2 for item X

capable of serving some of the requests.

The frontend examines each request and
routes it towards the appropriate shard, based
on a sharding function applied to a request key.

This pattern is useful for stateful services in
which the size of the overall state (data) is too
big to fit on a single machine.

The sharding function can rely on either:

= On key-range partitioning (based on the value of
the original request key)

= Or hashed-based partitioning, in which each
partition owns a range of hashes. Typically, a
technique named “consistent hashing” is used.
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Sharded services (2/2)

e This sharding pattern can also be

combined with the previous pattern

(replication), in order to support high
availability.

e In order to address scaling (up and
down) and load imbalance, a sharded
service must generally support
dynamic shard rebalancing.

client request
R1 for item A
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The scatter/gather pattern (1/2)

Another tree-based distributed pattern.

Unlike the basic replication or sharding
patterns, each service instance (often called
“leaf node”) is involved in the processing of
each request.

= Each instance performs a small amount of
processing and returns a result to the root instance.

» The root instance combines all the partial
results received from the instances, in order to

build a complete result, which is sent back to the
client.

This pattern:
= Can work with shards or identical replicas

» |s useful for work that can be easily parallelized,
i.e., when the different partitions can work
mostly independently

client request
A

Root node:

1) Contacts all leaf nodes in parallel
2) Merges results

]

]

]

Leaf node

Leaf node

Leaf node

R. Lachaize, T. Ropars

80



The scatter/gather pattern (2/2)

e In order to improve performance, this
pattern is usually augmented into a
shared and replicated scatter/gather
design.
= Each leaf node (shard) is replicated.

= Each request is sent to one replica per
shard.

e Using too many leaf nodes can hurt
performance:

= Parallelization overheads increase with the
number of nodes.

= Performance is limited by the slowest leaf
node (“straggler effect”).

client request

i

Root node:

1) Contacts all shards in parallel
2) Merges results

||

]

|

Shard #1
Replica #1

Shard #2
Replica #1

Shard #3
Replica #1
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Cloud native design patterns — Outline Overview

Single-node patterns:
forming the basic elements of a
distributed system

Sidecar pattern

Ambassador pattern

Adapter pattern

Serving patterns:
for long-running, request-oriented
applications

Batch computational patterns:
for intermittent, parallel computations on
an input dataset

Replicated, load-balanced services

Sharded services

Scatter/gather pattern

Work queue system

Event-driven batch processing

Coordinated batch processing
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Work queue systems (1/5)

A simple form of batch processing
system.

The work queue is used by clients to
submit work items, to be processed
by a set of workers.

Each work item corresponds to an
independent piece of work.

Each worker processes one item at a
time.

The set of workers can be scaled up or
down according to the amount of
pending work.

R. Lachaize, T. Ropars
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Work queue systems (2/5)

Most of the queue management logic is independent from the actual type of work to be
performed.

Similarly, most of the interactions with the queue are independent from the internal
implementation of the queue.

Thus, it is easy to decouple application-specific and generic code logics, by using distinct
containers. The generic logic can be put into ambassador containers.

Main interfaces:
= Work submission (between clients and the work queue manager)

= Work queue submission (between the work queue manager and the actual work queue
implementation)

= Worker interface (between the actual work queue implementation and the workers)
e Assigning work
e Signaling work completion
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Work queue systems (3/5)

Fault tolerance

e Worker processes or machines may fail.
e A long-running work queue system must take into account such failures.

e Requires a mechanism to identify a failed worker and “resubmit” the work item
(without involving the initial client).

e This problem is simplified if the processing of the work items is idempotent.

= |f so, there is no need to “undo” the partial side effects of the failed worker. It is only
necessary to reassign the work item to another worker.

R. Lachaize, T. Ropars

85



Work queue systems (4/5)

Work queue implementation

Different strategies are possible for the concrete implementation of the work queue pattern. For example:

e Leveraging the job management features of a container orchestrator

The work queue is actually the job queue of the orchestrator.
The orchestrator selects a worker node and creates a new container for each work item.
The orchestrator is in charge of monitoring failed nodes/containers and creating another instance.

e Using a “publish-subscribe system

The work queue is actually a publish-subscribe topic, configured in such a way that each message is only fetched
by one consumer.

A set of worker processes are created on a set of worker nodes.
Each worker fetches a work item from the topic, processes it, acknowledges it and starts over with a new item.

If a worker has not acknowledged a given message within a certain time interval, the worker is assumed to have
failed and the message is automatically reinserted in the topic by the publish-subscribe infrastructure.

A container orchestrator can be used to manage the worker nodes/processes. But in this design, the orchestrator
is not involved in the assignment of the work items.
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Work queue systems (5/5)

Dynamic scaling of the workers

e The set of workers can be adjusted according to the amount of pending work,
which may vary over time.

e A possible autoscaling design:

= Monitoring two metrics:

e Interarrival time: average time (measured over a long period of observation) between the
arrival of consecutive work items in the queue.

e Average processing time for the work items (not counting the time spent waiting in the queue).
= Upscaling: to guarantee that (average processing time / number of parallel workers)
is lower than the average interarrival time
e Increase number of workers and/or use faster machines

= Downscaling: same principle in reverse direction if (average processing time /
number of parallel workers) is much lower than the average interarrival time
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Event-driven batch processing (1/8)

e Also known as “workflow system”.

e Main principles:
= Scenario in which a given event/input requires more than a single action. This could be, for
example:
e The need to perform a sequence of actions
e The need to produce multiple outputs from the same input.

= |n such a scenario, we need to link multiple work queue together to form a directed acyclic
graph (DAG) of processing stages.
e We will describe several architectural patterns for workflows:
= Basic chain/sequence of work queues: simple generalization of the previous pattern
= Copier
= Filter
=  Splitter
= Sharder
= Merger
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Event-driven batch processing (2/8)

The “Copier” pattern

Input: a single stream of work items

Output: two or more duplicated streams of
work items (each one is an identical copy of the
input stream)

Useful when there are multiple and
independent processing tasks to be performed
on the same items.

Example: transcoding a raw video stream into
several target formats.

Note: work items are not necessarily costly to
duplicate because they do not have embed a
copy of the data items (they may contain only
references to the data being stored elsewhere).
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Event-driven batch processing (3/8)

The “Filter” pattern

Input: a single stream of work items

Output: a single stream of work items, in
which, some of the original items have been
removed, according to a particular criterion.

Useful to perform conditional work depending
on client-defined settings

Example: filter out work items according to the
type of attached input file

Note: can be implemented using an
ambassador container in front of a regular work
queue

R. Lachaize, T. Ropars
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Event-driven batch processing (4/8)

The “Splitter” pattern

Input: a single stream of work items

Output: two streams of work items. Each input
item is forwarded to only one of the output
streams according to a particular criterion.

Useful to fork a processing pipeline into two
distinct parts.

Example: differentiate processing steps for
orders based on the type of notification
requested by users (email vs. text).

Note: a variant of this pattern can combine the
“copier” and “splitter” behaviors (e.g., for users
who choose both email and text notifications).

R. Lachaize, T. Ropars
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Event-driven batch processing (5/8)

The “Sharder” pattern

A variant of the splitter pattern
Input: a single stream of work items

Output: multiple output streams of work items.
Each input item is forwarded to only one of
the output streams according to a sharding
function.

The sharding function may dynamically take
into account the unavailabity of some output
queues.

Useful:

= For large-scale, hierarchical/distributed processing
& load balancing

= For improved reliability via partial availability (e.g., if
the shards are placed on different data centers /
regions)
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Event-driven batch processing (6/8)

The “Merger” pattern

The opposite of a “copier” pattern

Input: multiple input streams of work
items

Output: a single output stream of work
items, which is the union of the input
streams

Useful for:

= “Reconciling” different processing pipelines
that share the same finishing steps (e.g.,
sharded pipelines)

= Factoring server resources for workflows
sharing common processing stages
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Event-driven batch processing (7/8)

How to implement the previously described patterns?

e Inadequate solutions:

= Using a “traditional” distributed storage system (e.g., file system,
database, object storage) for such a purpose is often impractical for
developers and can also raise efficiency and/or robustness concerns.

= Similarly, using raw networks streams (e.g., TCP/IP sockets) is often
cumbersome and fragile.

R. Lachaize, T. Ropars
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Event-driven batch processing (8/8)

How to implement the previously described patterns? (continued)

e One of the most appropriate building blocks is a “publish-
subscribe” system
= Also known as a “messaging bus” or “message broker”.
Each input or output stream of work items and results is mapped to a
distinct “queue” (a.k.a. “topic”).
Each queue can receive items produced by one or more publishers.
Each queue can be consumed by one or more subscribers.

Each pattern instance:
e Acts as a subscriber for one or several queues
e Acts as a publisher for one or several queues

R. Lachaize, T. Ropars
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Coordinated batch processing (1/3)

A specific set of patterns for parallel, multi-
step computations.

Based on two main phases:
» Phase 1: Parallel work distribution

= Phase 2: “Aggregation” of the results to generate
a global output

parallel work distribution
Such patterns are used (with various

incarnations) in many different domains, such
as:

= Scientific computing

= Big data processing (e.g., the MapReduce _
programming model) results aggregation

Phase 1 is related to the “splitter/sharder”
patterns described previously.

We will mainly focus on phase 2, with two
major patterns: “Join” and “Reduce”

R. Lachaize, T. Ropars
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Coordinated batch processing (2/3)

“Join” pattern

e Also known as “barrier synchronization”.

e Ensures that a given set of work items have been
processed before moving on to the next stage of a

workflow.

e Warning: not the same thing as the previous

“Merge” pattern
= “Merge” merely combine multiple streams into one \‘L/
= Instead, “Join” ensures that all the processing streams

have completed. Joi
Work items are released eln
downstream only when
all the top-level queues

have completed

e Typical usage: ensures that no data/output is
missing before some sort of aggregation is
performed.

e Decreases the intrinsic parallelism within a workflow,
and thus degrades the overall completion time.

e May be necessary to ensure the correctness of
some parallel algorithms.

R. Lachaize, T. Ropars



Coordinated batch processing (3/3)

“Reduce” pattern

e Unlike the “join” pattern:
= Does not require to wait until all the items have been processed. (More parallelism)
= Progressively/optimistically merges together all the available results.

e Each step of the reduce phase merges several items into a single one (hence the
name: it “reduces” the number of output items).

e The reduce phase can be repeated as many (or as few) times as necessary in order
to obtain a single output for the entire data set.

e Some examples of concrete “reduce” operations:
= Count: counting the number of occurrences of each value (e.g., word count)
=  Sum: summation of a collection of different values
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