Cloud native
applications, infrastructure
and patterns

Part 1: Origins and main characteristics

Renaud Lachaize & Thomas Ropars

Univ. Grenoble Alpes
M2 MoSIG
October 2025

Main references

B. Scholl, T. Swanson, P. Jausovec. Cloud native: Using containers,
functions, and data to build next-generation applications. O'Reilly, 2019.

J. Garrisson, K. Nova. Cloud-native infrastructure: Patterns for Scalable
Infrastructure and Applications in a Dynamic Environment. O'Reilly, 2017.

Cloud Native Computing Foundation (CNCF) Web site: https://www.cncf.io

Google Site Reliability Engineering (SRE) resources:

= https://sre.qoogle
= Free eBooks: https://sre.google/books/

R. Lachaize, T. Ropars

https://www.cncf.io/
https://sre.google/
https://sre.google/
https://sre.google/books/

Introduction

e During the first era of Cloud computing, most efforts were focused on
facilitating the migration of existing applications (and their legacy code
bases) to Cloud platforms.

= “Lift and shift” to laaS (Infrastructure as a Service)

= Migration of domain-specific applications (e.g., Web applications) to PaaS (Platform
as a Service)

e Over the past ~decade, a number of principles have emerged for shaping the
design of cloud-based applications and their underlying infrastructure.

e These new applications have been designed from the ground up in order
to take into account the specific characteristics (challenges and
opportunities) of modern Cloud platforms and technologies.

R. Lachaize, T. Ropars

“Cloud native”: a definition

“Cloud native technologies empower organizations to build and run scalable
applications in modern, dynamic environments such as public, private, and hybrid
clouds. Containers, service meshes, microservices, immutable infrastructure, and
declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.

The Cloud Native Computing Foundation seeks to drive adoption of this paradigm by
fostering and sustaining an ecosystem of open source, vendor-neutral projects. We
democratize state-of-the-art patterns to make these innovations accessible for everyone.”

Source: CNCF Cloud Native Definition v1.0, 2018 [emphasis added]
(https://github.com/cncf/toc/blob/master/DEFINITION.md)

R. Lachaize, T. Ropars

https://github.com/cncf/toc/blob/master/DEFINITION.md

“Cloud native”: another definition

“A cloud native application is engineered to run on a platform and is designed for resiliency, agility,
operability, and observability.

e Resiliency embraces failures instead of trying to prevent them:; it takes advantage of the dynamic
nature of running on a platform.

e Agility allows for fast deployments and quick iterations.

e Operability adds control of application life cycles from inside the application instead of relying on
external processes and monitors.

e Observability provides information to answer questions about application state.”

“Cloud native applications acquire these traits through various methods. It can often depend on where
your applications run and the processes and culture of the business.

The following are common ways to implement the desired characteristics of a cloud native application:

Microservices Health reporting Telemetry data Resiliency Declarative, not reactive"

(Source: J. Garrisson and K. Nova. Cloud native infrastructure. O’'Reilly, 2017.)

R. Lachaize, T. Ropars 5

Health reporting

The developers of an application know best what it means for this application to be in a
“healthy state”.

Letting infrastructure providers figure out by themselves the current health of an
application often results in fragile designs.

A cloud native application should expose its own “health check” interface.

= Such an interface can typically be implemented as a Web endpoint that returns a health status
via an HTTP return code.

= |n addition to error codes, the absence of a prompt reply can also be interpreted as a symptom of
a failed task or communication problem.

Application may have more than two states (“healthy” / “unhealthy”)
= For example, the application may be starting up or shutting down.
= Giving previse feedback to the infrastructure can help it operate the application in a more robust

” 1]

and efficient way (e.g., distinction between states such as “ready”, “starting (not ready yet to
receive traffic)” and “failed”.

R. Lachaize, T. Ropars

Telemetry data

Not the same thing as health reporting (although some data may overlap) — they serve
different purposes.

Telemetry data provide information about business objectives.
= Sometimes named “service level indicators” (SLIs) or “key performance indicators” (KPls)

= These data can be used to check if an application is meeting its “service level objective”
(SLO).

Telemetry data is often stored in a time series database.

Examples of questions and metrics (“RED”):
= Rate: “How many requests per second does my application receive?”
= Errors: “Are there any errors?”
= Duration: “How long does it take to obtain a response?”

Can be used to raise alerts about the global (application-level) behavior.

Not the same thing as “logs” (logs are mostly used for debugging).

R. Lachaize, T. Ropars

Service Levels: SLAs, SLOs & SLIs (1/3)

e These notions are complementary and all related to the level/quality of service
provided to the users/clients using a service (internal or external “customers”).

e The quotes below are taken from Google’s SRE book: https://sre.google/sre-
book/service-level-objectives/

e SLI: Service Level Indicator

= Definition: “a carefully defined quantitative measure of some aspect of the level of
service that is provided”.

= Examples: request latency, system throughput, end-to-end latency, error rate,
availability, data durability

R. Lachaize, T. Ropars

https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/

Service Levels: SLAs, SLOs & SLIs (2/3)

e SLO: Service Level Objective

Definition: “a target value or range of values for a service level that is measured by an SLI”
A natural structure for SLOs is thus SLI < target, or lower bound < SLI < upper bound.
For example: average search request latency should be less than 100 milliseconds.

Why? “Without an explicit SLO, users often develop their own beliefs about desired performance,
which may be unrelated to the beliefs held by the people designing and operating the service. This
dynamic can lead to both over-reliance on the service, when users incorrectly believe that a

service will be more available than it actually is, and under-reliance, when prospective users
believe a system is flakier and less reliable than it actually is.”

Choosing a set of SLOs can be nontrivial. For example, several SLIs might be connected
behind the scenes:

e Higher throughput often leads to higher latencies.
e Many services have some performance cliff/drop beyond some input load threshold

R. Lachaize, T. Ropars 9

Service Levels: SLAs, SLOs & SLIs (3/3)

e SLA: Service Level Agreement

= Definition: “an explicit or implicit contract with your users that includes consequences
of meeting (or missing) the SLOs they contain. The consequences are most easily
recognized when they are financial—a rebate or a penalty—but they can take other
forms.”

= “An easy way to tell the difference between an SLO and an SLA is to ask "what
happens if the SLOs aren’t met?": if there is no explicit consequence, then you are
almost certainly looking at an SLO.”

= “Whether or not a particular service has an SLA, it's valuable to define SLIs and SLOs
and use them to manage the service.”

e For more details, examples and advice:
= https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
= https://sre.qgoogle/sre-book/service-level-objectives/

R. Lachaize, T. Ropars 10

https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://cloud.google.com/blog/products/devops-sre/sre-fundamentals-sli-vs-slo-vs-sla
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/
https://sre.google/sre-book/service-level-objectives/

Resiliency (1/3)

e Resilience to failures:
= s generally the most important characteristic for an application.

= s partially managed by the infrastructure but cloud native applications must also
handle some part of that responsibility.

= relies on two main aspects: design for failure and graceful degradation.

R. Lachaize, T. Ropars

11

Resiliency (2/3)

e Design for failure
= The SLO specifies the uptime guarantees for a given service.
= Failure are almost unavoidable (over time) in any complex system.

= A cloud native application is built with the assumption that failures will happen
(although not all precise types/scenarios of failures can be anticipated).

= Some (severe) kinds of failures cannot be addressed by the application (e.g., network
partitions) and should be handled by the cloud platform.

R. Lachaize, T. Ropars 12

Resiliency (3/3)

e Graceful degradation

= Cloud native apps must be designed to handle excessive load (even though the cloud
platform may also help).

= Graceful service degradation consists in servicing all/most requests (i.e., providing

available service) yet with a lower quality of responses (e.g., with less accuracy or
less data — partial answers), in order to lower the request processing costs.

R. Lachaize, T. Ropars 13

Declarative, not reactive (1/2)

e Cloud native (distributed) applications should rely on the infrastructure to achieve
some kinds properties instead of trying to manage them directly.

For such properties, the application should declare the desired outcome and let the
infrastructure reach this outcome. The steps to be taken are decided by the infrastructure.

This approach allows building simpler and more robust applications (and assemblies of
applications/services).

e Declarative communications

Applications trust that the network infrastructure will deliver the messages.

The infrastructure can leverage a number of techniques to improve communication resiliency and
efficiency, such as load balancing, load shedding, service discovery, retries and timeouts, and
circuit breaking.

Such infrastructure-level features can be embedded within application using transparent proxies
(e.g., implemented as “sidecar” containers).

R. Lachaize, T. Ropars

14

Declarative, not reactive (2/2)

e Declarative state

Here, the “state” of an application refers to behavioral or structural properties.
e For example : the number of replicas for a given service.

Old approaches are based on imperative configuration: a description of a sequence of
steps to perform in order to reach a given state.

In contrast, with a declarative approach, an administrator describes only the
desired state of the distributed application (not the steps to reach it).

Expected benefits:

e Fewer errors. Since a declarative configuration describes an expected result, its impact can
be immediately understood.

e Allows leveraging usual software development tools for manipulating configurations: source
versioning, unit testing.

e Provides simple support for configuration rollback in case of problem (i.e., reversible
operations).

R. Lachaize, T. Ropars 15

“"The twelve-factor app”

One of the first historical milestones that lead to the design principles of Cloud-native
applications.

Context: A (short) document / manifesto written in 2012 by the staff of Heroku, a
Cloud provider for applications based on the Platform-as-a-Service (PaaS)
paradigm.

= “The contributors to this document have been directly involved in the development and
deployment of hundreds of apps, and indirectly witnessed the development, operation, and scaling
of hundreds of thousands of apps.”

Available online at: https://12factor.net

We will summarize it in the next slides, using mostly verbatim quotes.

R. Lachaize, T. Ropars 17

https://12factor.net/

Source: Most of the contents of this slide are borrowed/adapted from https://12factor.net

“The twelve-factor app” - Motivation (1/2)

A synthesis of experience and observations on a wide variety of SaaS apps in
the wild.

A triangulation on ideal practices for app development, paying particular attention to :
= The dynamics of the organic growth of an app over time,

= the dynamics of collaboration between developers working on the app’s
codebase,

= and avoiding the cost of software erosion.

e Slow deterioration of software over time that will eventually lead to it becoming slow, faulty or
unusable.

e Typical cause: the software suffers from a lack of updates with respect to the changing
environment in which it resides.

R. Lachaize, T. Ropars

18

https://12factor.net/

Source: Most of the contents of this slide are borrowed/adapted from https://12factor.net

“The twelve-factor app” - Motivation (2/2)

Goals:

e “to raise awareness of some systemic problems seen in modern
applications development,

e to provide a shared vocabulary for discussing those problems,

e and to offer a set of broad conceptual solutions to those problems with
accompanying terminology.”

R. Lachaize, T. Ropars 19

https://12factor.net/

Source: Most of the contents of this slide are borrowed/adapted from https://12factor.net

The 12 factors — Overview

I) Codebase: One codebase tracked in
revision control, many deploys.

Il) Dependencies: Explicitly declare and
isolate dependencies.

lll) Config: Store config in the environment.

IV) Backing services: Treat backing services
as attached resources.

V) Build, release, run: Strictly separate build
and run stages.

VI) Processes: Execute the app as one or
more stateless processes.

VII) Port binding: Export services via port
binding.

VIII) Concurrency: Scale out via the process
model.

IX) Disposability: Maximize robustness with
fast startup and graceful shutdown.

X) Dev/prod parity: Keep development,
staging, and production as similar as possible.

Xl) Logs: Treat logs as event streams.
XIl) Admin processes: Run

admin/management tasks as one-off
processes.

R. Lachaize, T. Ropars 20

https://12factor.net/

“"Beyond the 12-factor application”

A revised list of guidelines proposed by Kevin Hoffman (Pivotal) in 2016.

(Freely available booklet from Pivotal/O’Reilly: https://content.pivotal.io/ebooks/beyond-the-
12-factor-app)

e Strongly inspired by the original 12-factor manifesto from Heroku.
= Revisits some factors

= Adds some new factors
= Changes the order of some factor to highlight a sense of priority
e Overall: 15 factors

e Warning: “Rather than adopting an all-or-nothing approach, learning where and when to

compromise on the guidelines [...] is probably the single most important skill to have
when planning and implementing cloud-native applications.”

21

https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app
https://content.pivotal.io/ebooks/beyond-the-12-factor-app

“"Beyond the 12-factor application” - List

1) One codebase, one application

2) APl first

3) Dependency management

5) Configuration, credentials, and code
6) Logs

7) Disposability

8) Backing services

9) Environment parity

12) Stateless processes

13) Concurrency

14) Telemetry

15) Authentication and authorization

22

Infrastructure as Code (IaC)

e A set of tools and methodologies aimed at achieving automated and reproducible
deployments of software configurations on (physical or virtual) machines.

= Promotes the usage of machine-readable configuration description files, rather than interactive
configuration tools.

= The configuration descriptions can be managed using a version control system.

= Abstracts away and leverages low-level APls (e.g., the machine provisioning API of a given cloud
vendor, or the configuration setup of a given operating system).

= Can address complex deployments requirements (e.g., multi-step coordination of dependencies
between machines/services).

e Typically based on a declarative approach:
= Goes beyond mere scripting of configuration steps.

= Administrator defines the desired target configuration, and the tools perform the necessary actions
to reach this target state, regardless of the initial state (and the potential intermediate failures).

e Examples of tools: Terraform, Saltstack, Ansible.

R. Lachaize, T. Ropars 24

Infrastructure as Software

An infrastructure management approach that goes further than “infrastructure as code”.

“Infrastructure as code” relies on a static description of the target infrastructure.
= There is limited support for managing the evolution of the infrastructure.
= Risks of frequent configuration drifts.

In contrast, “infrastructure as software” is a continuously running service that:
= Builds and maintains a representation of the current state of the infrastructure

= Monitors the infrastructure and the desired state specified by the administrator (declarative
approach)

= Mutates the infrastructure (and its representation), in order to reach (or maintain) the desired state.

= |s based on a reconciler pattern (control loop) to converge towards the desired state.

Container orchestrator systems (like Kubernetes) are an incarnation of this
approach.

R. Lachaize, T. Ropars 25

Immutable infrastructure

A popular approach for the management of configuration modifications within a cloud
infrastructure.

Main idea:

= One should avoid mutating the existing/deployed infrastructure.

= |nstead, it is better to allocate/deploy (from scratch) a new version of the infrastructure (and
then decommission the old one).

= Metaphor: “treat infrastructure resources (e.g., VMs) like cattle, not like pets!” (a.k.a. “phoenixes
vs. snowflakes”)

Based on some key observations:
= Lower risks of configuration drifts/problems if we always start from a known, consistent state.

= This approach is more heavyweight but nonetheless viable, because the creation/destruction of
virtualized resources (e.g., VMs or containers) can be made efficient and fully automated.

Expected benefits: improved configuration consistency, predictability and reliability.

Limitations: mainly suited to stateless components.

R. Lachaize, T. Ropars 26

Stateless vs. stateful components (1/2)

e One of the major traits of cloud native applications is related to how they handle
application state.

e Some definitions:

= By “state”, here, we mean the information that must be retained by a
service/component after it has finished processing a request/job.

= A stateless component does not retain any state after the completion.

= A stateful component retains state, either temporarily (“session state”) or
permanently (“persistent state”)

R. Lachaize, T. Ropars 27

Stateless vs. stateful components (2/2)

e |n order to handle scalability, autoscaling, and fault-tolerance in a flexible and
efficient way, cloud native applications are based on design principles that
strive to:

= Dissociate as much as possible the stateful parts and the stateless parts in an
application (“externalized state”)

= |f appropriate, use distinct stateful components to store different types of state
information (see the “microservices” paradigm discussed later)

e Different types of storage components and/or different instances of the same component

e [n other words, compute and storage layers are decoupled, at a fine granularity.

R. Lachaize, T. Ropars 28

CNCF: Cloud Native Computing Foundation (1/2)

A non-profit foundation (part of the Linux Foundation), with many industrial members

The foundation’s mission is to make cloud native computing ubiquitous through
open-source projects.

Main responsibilities:
= Stewardship of the projects
= Fostering the growth and evolution of the ecosystem

= Promotion of the underlying technologies, and approach to application definition and management,
including: events and conferences, marketing (SEM, direct marketing), training courses and
developer certification

= Serve the community by making the technology accessible and reliable.

Useful links:
= Web site: https://www.cncf.io

= List of projects (“interactive landscape”): https://landscape.cncf.io

R. Lachaize, T. Ropars 29

https://www.cncf.io/
https://landscape.cncf.io/

CNCF: Cloud Native Computing Foundation (2/2)

“The CNCF will strive to adhere to the following principles:

Fast is better than slow. The foundation enables projects to progress at high velocity to support aggressive
adoption by users.

Open. The foundation is open and accessible, and operates independently of specific partisan interests. [...]
the foundation’s technology must be available to all according to open-source values.

Fair. The foundation will avoid undue influence, bad behavior or “pay-to-play” decision-making.

Strong technical identity. The foundation will achieve and maintain a high degree of its own technical
identify that is shared across the projects.

Clear boundaries. The foundation shall establish clear goals, and in some cases, what the non-goals of the
foundation are to allow projects to effectively co-exist, and to help the ecosystem understand where to focus

for new innovation.

Scalable. Ability to support all scales of deployment, from small developer centric environments to the scale
of enterprises and service providers. This implies that in some deployments some optional components may
not be deployed, but the overall design and architecture should still be applicable.

Platform agnostic. The specifications developed will not be platform specific such that they can be
implemented on a variety of architectures and operating systems.”

R. Lachaize, T. Ropars

30

CNCF Cloud native trail map

Available from:
https://github.com/cncf/landscape/blob/master/READM
E.md#trail-map

“Provides an overview for enterprises starting their
cloud native journey.”

“[Describes] a recommended process for leveraging
open-source, cloud-native technologies.”

10 steps:
2. Cl/CD

4. Observability &
analysis

1. Containerization

3. Orchestration &
application definition

5. Service proxy,
discovery & mesh

7. Distributed
database & storage

6. Networking & policy

8. Streaming &
messaging

10. Software
distribution

9. Container registry &
runtime

<1 CLOUD NATIVE

k> COMPUTING FOUNDATION

CLOUD NATIVE
TRAIL MAP

The Cloud Native Landscape Loncfio
has alarge number of options. This Cloud
Native Trail Map is a recomm
for leveraging open
technologies. At
avendor-supported of

and everything after step #3 is optional
based on your circumstances.

HELP ALONG THE WAY

A. Training and Certification
Consider training offerings from CNCF
and then take the exam to become a
Certified Kubernetes Administrator or a
Certified Kubernetes Application Developer

cnctio/training

B. Consulting Help

If you want assistance with Kubernetes
and the surrounding stem, consider
leveraging a Kubernetes Certified
Service Provider

cnefio/kesp

C. Join CNCF's End User

Community
For comparies that dorit offer cloud
native services externally

cnctio/enduser

WHAT IS CLOUD NATIVE?

Cloud native technologies empower
organizations to build and run scalable
applications in modern, dynamic
environments such as public, private,
and hybrid clouds. Containers, service
meshes, microservices, immutable
infrastructure, and declarative APls
exemplify this approach.

These techniques enable loosely
coupled systems that are resilient,
manageable, and observable. Com-
bined with robust automation, they
allow engineers to make high-impact
changes frequently and predictably
with minimal toil

The Cloud Native Computing Foundation
seeks to drive adoption of this para-
digm by fostering and sustaining an
ecosystem of open source, vendor
neutral projects. We democratize
state-of-the-art patterns to make these
innovations accessible for everyone

EfeE
Loncfio [l AR

v20190821 Ea

R. Lachaize, T. Ropars

1. CONTAINERIZATION

2.cCl/cb

3. ORCHESTRATION &
APPLICATION DEFINITION

e market-leading ¢ on solution
dK n

5. SERVICE PROXY, DISCOVERY, & MESH

00l that

king, routing,

(]l
LINKERD

4. OBSERVABILITY & ANALYSIS

utic

8. STREAMING & MESSAGING

cma

Icubatiog | CNCF ncubating CICF ONCF ncubatng

9. CONTAINER REGISTRY & RUNTIME

10. SOFTWARE DISTRIBUTION

ce than JSON-RE!

d to do sec ve distrib

31

https://github.com/cncf/landscape/blob/master/README.md
https://github.com/cncf/landscape/blob/master/README.md
https://github.com/cncf/landscape/blob/master/README.md
https://github.com/cncf/landscape/blob/master/README.md

Source: The contents of this slide are heavily based on

https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (1/11)

e Monitoring — a definition:

“Collecting, processing, aggregating, and displaying real-time quantitative data about
a system, such as query counts and types, error counts and types, processing times,
and server lifetimes.”

Different types of monitoring:
e Black-box monitoring (externally visible behavior as a user would see it)

e White-box monitoring (based on metrics exposed by the internals of the system)
e |t is often important to combine both types

e Why monitoring?

Analyzing long-term trends (e.g., growth of number of users, data volume)
Making comparisons (over time or over different configurations)

Alerting

Building dashboards to answer basic questions about a service
Conducting retrospective analysis (debugging)

R. Lachaize, T. Ropars 34

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (2/11)

e More generally:

= Monitoring and alerting allow noticing when a system is broken or when
something is about to break.

= An effective alerting system must have a very good signal-to-noise ratio. This often
implies that an alerting system should be based on simple and robust rules and
principles.

= Monitoring a complex application is a significant effort.

e A monitoring system must address two main questions:
= Symptom: “What is broken?”
= Cause: “Why?” (root cause or intermediate cause)

= Making the distinction between these questions is important to achieve a good signal-
to-noise ratio.

R. Lachaize, T. Ropars 35

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (3/11)

e Black-box monitoring and white-box monitoring are complementary

= Black-box monitoring is symptom-oriented; it reports current problems, causing
trouble right now (as opposed to future/predicted problems). Useful for raising alerts
about real problems.

= White-box monitoring, based on the inspection of the system internals (e.g., logs)
allows the anticipated detection of upcoming/imminent problems (such as
failures masked by retries).

= |n a multi-layered system, one person’s symptom is another person’s cause (e.g.,
slow database accesses in a web application). Therefore white-box monitoring is
sometimes symptom-oriented and sometimes cause-oriented.

= |n the case of telemetry for debugging purposes, white-box monitoring is essential
(e.g., is my database really slow or is it due to the network?).

R. Lachaize, T. Ropars 36

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (4/11)

e The 4 “golden signals” of monitoring: /atency, traffic, errors,
saturation

= “If you measure all four golden signals and page/notify a human when one
signal is problematic (or, in the case of saturation, nearly problematic), your
service will be at least decently covered by monitoring.”

= Latency
e Definition: The time required to service a request.

e It is important to distinguish between the latency of successful requests and the
latency of failed requests.

= A failed request may have a very low latency and “pollute” the statistics of successful
requests.

= A slow error is even worse than a fast error.
= |tis important to track error latency (instead of just filtering out errors).

R. Lachaize, T. Ropars 37

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (5/11)

e The 4 “golden signals” of monitoring (continued)

= Traffic

e Definition: A measure of the demand placed on a service, using a high-level
system-specific metric.
= Example 1 — Web service: typical metric is the number of HTTP requests per second
(possibly broken down by category (e.g., static vs dynamic requests)

= Example 2 — Media streaming service: typical metrics are number of concurrent sessions
and network /O rate

R. Lachaize, T. Ropars 38

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (6/11)

e The 4 “golden signals” of monitoring (continued)

= Errors
e Definition: The rate of requests that fail, either explicitly or implicitly.
e Examples of implicit failures:

= Request returns HTTP code 200 (OK) but wrong content
= Request fails by policy: you consider that a response time > 1 second is unacceptable

e Catching (and measuring) different types of errors generally requires the
combination of several monitoring techniques/probes.

R. Lachaize, T. Ropars 39

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (7/11)

e The 4 “golden signals” of monitoring (continued)

= Saturation

e Definition: The estimation of how “full” a service is (or will soon become),
with an emphasis on the most limiting resource (e.g., in a memory-constrained
system, show memory).

e In many systems, the performance degrades before reaching 100% of utilization.
Therefore, defining a utilization target is essential.

e In complex systems, saturation can be supplemented with higher-level load
measurement (e.g., can the system handle 2x the current load?).

e Latency increases are often a leading indicator of saturation.

R. Lachaize, T. Ropars 40

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (8/11)

e Some methodological recommendations

= Do not focus only/mainly on mean values

e A given metric may be very imbalanced between different machines (e.g., CPU utilization) or
different requests (e.g., latency) and the average may hide some issues.

e Instead, pay special attention to the statistical distribution of your measurement and the
tail (i.e., high-percentile) values.

e If a given high-level task involves several services, the 99t" percentile for the latency of a
service can become the median latency for your high-level task!

e A simple way to monitor and visualize such distributions is to collect request counts
bucketed by latencies (suitable for rendering a histogram), rather than actual latencies, and
to choose an exponential distribution for the histogram boundaries. For example: how many

requests did | serve that took between 0 ms and 10 ms, between 10 ms and 30 ms, between
30 ms and 100 ms, etc.

R. Lachaize, T. Ropars 41

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (9/11)

e Some methodological recommendations (continued)

= Choose an appropriate resolution for your measurements

e A naive choice can result in poor results in both ways: too coarse (useless) or
unnecessarily fine-grained (costly without additional benefits)

e Different aspects of a system require measurements at different granularities.

= Example 1: Observing CPU load over a time span of one minute will not allow detecting most load
spikes. A finer granularity is necessary.

= Example 2: For the goal of achieving 99.9% annual uptime (in other words, no more than 9 hours of
aggregated downtime per year), checking the health of a service (or the saturation of a resource like the
disk space) more than once or twice per minute is probably unnecessary.
e High-resolution measurements may be expensive to collect, store and analyze. Think
carefully about your needs and how you can optimize the aggregation/summarization/retention
in order to achieve a good trade-off between accuracy and cost.

R. Lachaize, T. Ropars 42

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (10/11)

e Some methodological recommendations (continued)

= Design your monitoring system for simplicity
e The sources of potential complexity are never ending.

e Like all software systems, monitoring can become so complex that it becomes fragile,
difficult to change, and a big maintenance burden.

e The rules that catch real and frequent incidents should be as simple, predictable and reliable
as possible.

e Consider the removal of some parts that are not very useful/exercised.

e It can be tempting to combine monitoring with other facilities related to system inspection (e.qg.,
used for profiling, debugging, crash analysis, etc.) but combining too many parts may result in

a global system that is very complex and fragile. Maintaining distinct systems with clear,
simple, loosely coupled points of integration is a better strategy.

R. Lachaize, T. Ropars 43

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

Source: The contents of this slide are heavily based on
https://sre.google/sre-book/monitoring-distributed-systems/

Monitoring distributed systems (11/11)

e Wrap-up
= A healthy monitoring and alerting system must be simple and easy to reason
about.

» The alerts should focus primarily on symptoms or imminent real problems.
e Cause-oriented should rather be used as aids to debugging problems.

= Monitoring symptoms is easier the further “up” your stack you monitor.

e However, monitoring saturation and performance of subsystems such as databases often
must be performed directly on the subsystem itself.

= Adapt your targets to goals that are actually achievable.
= Make sure that your monitoring supports rapid diagnosis.

R. Lachaize, T. Ropars 44

https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/
https://sre.google/sre-book/monitoring-distributed-systems/

DORA metrics (1/5)

e DevOps Research and Assessment (DORA) is a running research program of Google
Cloud that seeks to understand the capabilities that drive software delivery and
operations performance.

e In 2020, the DORA team has identified a set of 4 key metrics that indicate the
performance of a software development team:

= Deployment Frequency — How often an organization successfully releases to

production

= Lead Time for Changes — The amount of time it takes a commit to get into
production

= Change Failure Rate — The percentage of deployments causing a failure in
production

= Time to Restore Service — How long it takes an organization to recover from a
failure in production

e The set of metrics was later updated with a 5th metric: reliability — How a team
meets or exceed the reliability targets for the software and applications they operate.

R. Lachaize, T. Ropars

45

DORA metrics (2/5)

e Deployment frequency
= This metric is related to velocity.

= “For the primary application or service you work on, how often does your organization
deploy code to production or release it to end users?”

= “Useful to to understand how often the team successfully deploys software to
production, and how quickly the teams can respond to customers’ requests or new
market opportunities.”

e Lead time for change
= This metric is related to velocity.
= “For the primary application or service you work on, what is your lead time for

changes (that is, how long does it take to go from code committed to code
successfully running in production)?”

= “Reflects the efficiency of CI/CD pipelines and visualizes how quickly work is
delivered to customers.”

R. Lachaize, T. Ropars 46

DORA metrics (3/5)

e Time to restore service
= This metric is related to stability.

= “For the primary application or service you work on, how long does it generally take to restore

service when a service incident or a defect that impacts users occurs (for example, unplanned
outage, service impairment)?”

= “Low time to restore service means the organization can take risks with new innovative features to
drive competitive advantages and increase business results.”

e Change fail percentage
= This metric is related to stability.

= “For the primary application or service you work on, what percentage of changes to production or
releases to users result in degraded service (for example, lead to service impairment or service
outage) and subsequently require remediation (for example, require a hotfix, rollback, fix forward,
patch)?”

1]

= “Useful to gain insights into the quality of the code being shipped. High change failure rate may
indicate an inefficient deployment process or insufficient automated testing coverage.”

R. Lachaize, T. Ropars 47

DORA metrics (4/5)

e Reliability

= This metric is related to operational performance and complementary to the four
previous metrics, which are more related to software delivery performance.

= Assesses the ability of a team to meet or exceed their reliability target.
= Encompasses several dimensions: availability, latency, performance, and scalability.

R. Lachaize, T. Ropars 48

DORA metrics (5/5)

For more information:

https://dora.dev

https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-

measure-your-devops-performance?hl=en

https://www.sumologic.com/glossary/dora-metrics/

https://github.com/dora-team/fourkeys

https://docs.qitlab.com/ee/user/analytics/dora metrics.html

https://qithub.com/DeveloperMetrics/DevOpsMetrics

R. Lachaize, T. Ropars

49

https://dora.dev/
https://dora.dev/
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en
https://www.sumologic.com/glossary/dora-metrics/
https://www.sumologic.com/glossary/dora-metrics/
https://www.sumologic.com/glossary/dora-metrics/
https://www.sumologic.com/glossary/dora-metrics/
https://github.com/dora-team/fourkeys
https://github.com/dora-team/fourkeys
https://github.com/dora-team/fourkeys
https://github.com/dora-team/fourkeys
https://docs.gitlab.com/ee/user/analytics/dora_metrics.html
https://docs.gitlab.com/ee/user/analytics/dora_metrics.html
https://github.com/DeveloperMetrics/DevOpsMetrics
https://github.com/DeveloperMetrics/DevOpsMetrics

